

Common statistical tools

Hossein Jorjani
hossein.jorjani@slu.se
018 - 67 1964

1

And, please remember that ...

Scientists are by no means bound to follow philosophers' advice on [conducting research], and they don't have such habits.

Jorjani (1995; *cf* Molander (1983))

3

A word of caution

Don't believe whatever you read in Wikipedia!

I have my own opinion, and I don't give a damn to what Wikipedia or any other individual source says.

Form your own opinion

2

Induction

Webster

An instance of reasoning from a part to a whole, or
A conclusion arrived at by reasoning from particulars to generals, or
Reasoning from the individual to the universal

Wiktionary

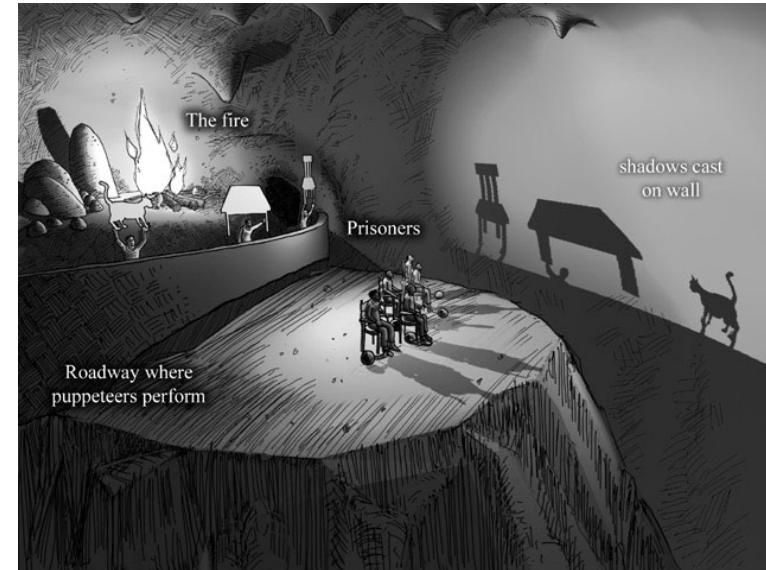
(logic) the derivation of general principles from specific instances
(mathematics) a general proof of a theorem by first proving it for a specific integer (for example) and showing that, if it is true for one integer then it must be true for the next

4

Deduction

Webster

To deduce by logical process:


To draw (a conclusion) necessary from given premises;

To infer (something) about a particular case from a general principle that holds for all such cases.

Wiktionary

A process of reasoning that moves from the general to the specific, in which a conclusion follows necessarily from the premises presented, so that the conclusion cannot be false if the premises are true.

5

6

Induction-deduction

Every phenomenon has a true type (archetype=idea).

The archetype can manifest itself in many forms.

Every phenomenon has an essence.

Essence will be known by examining many observations.

No more deduction, no more induction

Francis Bacon 1561-1626

We have suffered enough from deduction!

David Hume 1739-1740

Good science cannot be based on induction!

7

8

What the hell are we going to do now?

We have suffered enough from deduction!

Good science cannot be based on induction!

9

?

10

Summary

Two schools of statistics

Frequentist statistics

Bayesian statistics

Frequentist statistics

11

12

Is this an inductive mode of reasoning?

Pearson, 1903

... probably the most correct way of looking at **any fraternal correlation** table would be to suppose it a random sample of all pairs of brothers which would be obtained by giving a large, or even indefinitely large, fertility to each pair, for what we actually do is to take families of varying size and take **as many pairs of brothers as they provide.**

13

Is this an inductive mode of reasoning?

Fisher, 1918

... each **pair of brothers** is a random sample of two from an infinite fraternity, that is to say from all the sons which a pair of parents might conceivably have produced, ...

14

Modern (frequentist) statistics

Regression

Francis Galton 1886

Correlation

(Francis Galton 1886)
Carl Pearson 1903

Analysis of variance

Ronald Fisher 1918

15

Darwin's theories of evolution

FACT 1: Potential exponential increase of populations.
SOURCE: Paley, Malthus, ...

FACT 2: Observed steady-state stability of populations.
SOURCE: universal observations

FACT 3: Limitation of resources.
SOURCE: Observation reinforced by Malthus.

INFERENCE 1: Struggle for existence among individuals.
SOURCE: Malthus.

FACT 4: Uniqueness of the individual.
SOURCE: Animal breeders, taxonomists.

FACT 5: Heritability of much of the individual variation.
SOURCE: Animal breeders.

INFERENCE 2: Differential Survival, i.e. natural selection.
SOURCE: Darwin.

INFERENCE 3: Through many generations: **evolution**.
SOURCE: Darwin

- 1 - Evolution as such
- 2 - Evolution by common descent
- 3 - The origin of diversity
- 4 - Gradualness
- 5 - Natural selection

16

Before Fisher (1918)

Regression & Correlation

No genetic theory

Based on phenotypic observations

Obviously normally distributed

17

Mendel and evolution

Discrete distribution based on one single gene with large effect: “Hopeful Monster” theory

Continuous distribution with small gradual changes

18

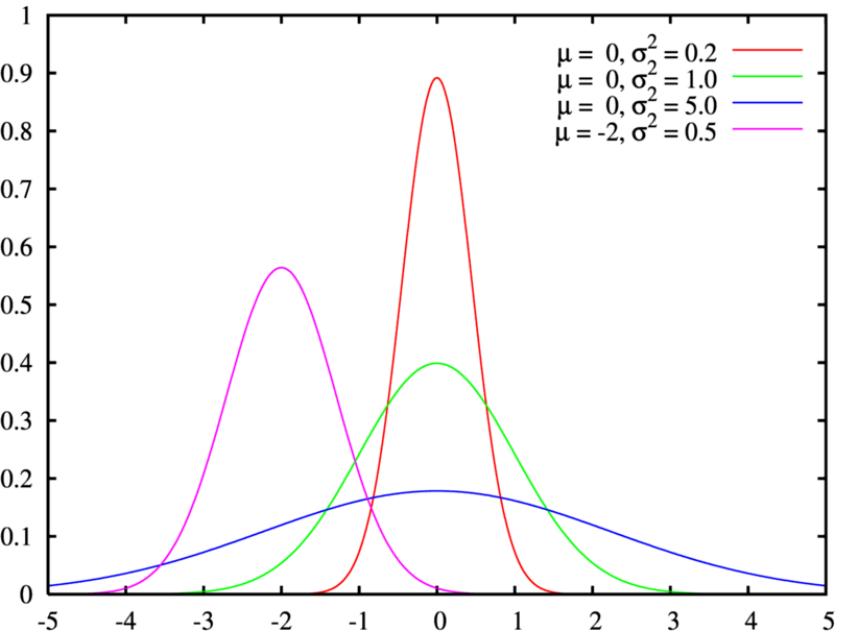
Biometrician-Mendelian controversy

Ronald Aylmer Fisher
(1890-1962)

Geneticist & Statistician

19

Fisher (1918)


Analysis of variance

Based on Mendelian genetic theory

Postulating the aggregate behavior of many genes

Invoking normal distribution

20

21

Inductive statistical Inference theory

Sir R. A. Fisher

(Repeated sampling)

Estimation of unknown parameters

Hypothesis testing

22

Let's estimate some (sample) parameters

Mean

$$\bar{X} = \frac{\sum X}{n}$$

Variance

$$V_x = \frac{\sum (X - \bar{X})^2}{n-1}$$

Standard deviation

$$SD = \sqrt{V}$$

23

Properties of variance

For independent X and Y

$$V_{(X+Y)} = V_X + V_Y$$

$$V_{(X-Y)} = V_X + V_Y$$

$$V_{(2X)} = 4V_X$$

$$V_{(kX)} = k^2 V_X$$

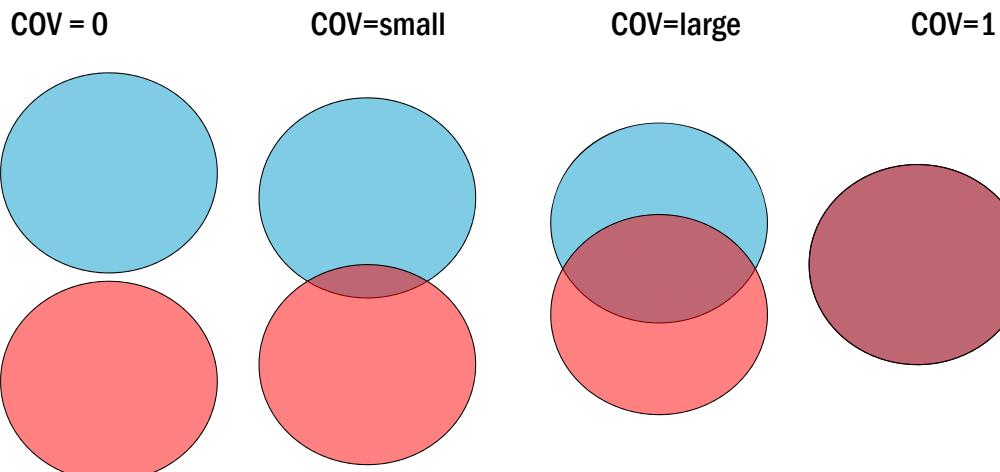
$$V_{(X+k)} = V_X$$

24

Two equations for variance (actually SS)

$$\begin{aligned}
 \sum(X - \bar{X})^2 &= \sum(X^2 + 2X\bar{X} + \bar{X}^2) \\
 &= \sum X^2 - 2\bar{X}\sum X + n\bar{X}^2 \\
 &= \sum X^2 - 2\frac{\sum X}{n}\sum X + n\frac{\sum X}{n}\frac{\sum X}{n} \\
 &= \sum X^2 - \frac{(\sum X)^2}{n}
 \end{aligned}$$

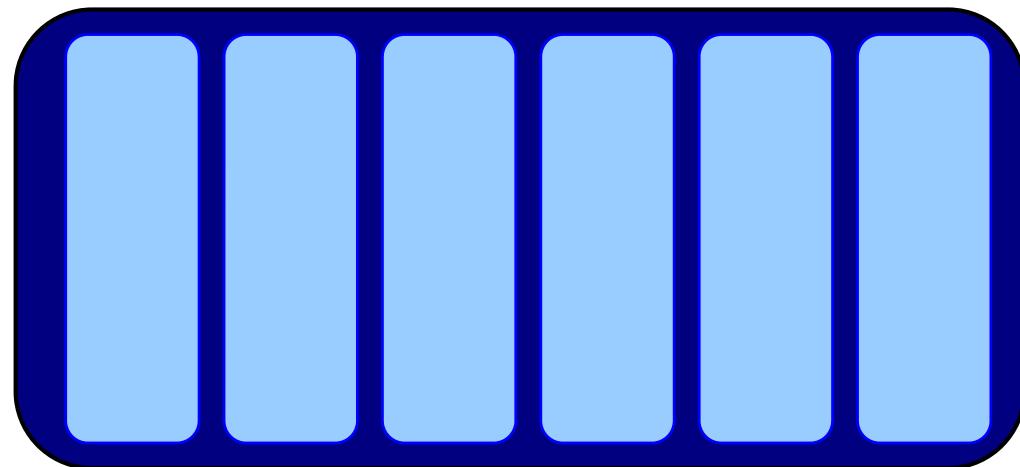
25


Regression and correlation

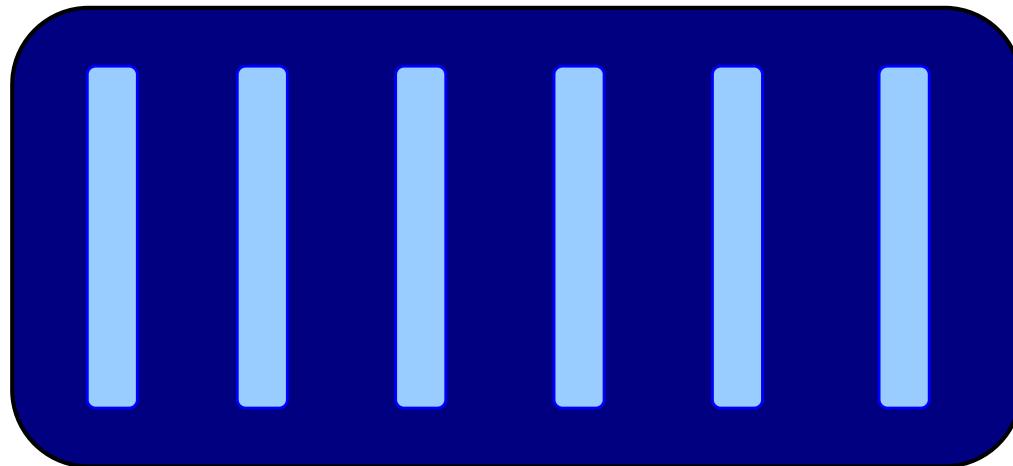
$$COV_{Y \square X} = \frac{\sum(X - \bar{X})(Y - \bar{Y})}{n - 1}$$

$$b_{Y \square X} = \frac{COV_{Y \square X}}{V_X}$$

$$r_{Y \square X} = \frac{COV_{Y \square X}}{\sqrt{V_X V_Y}}$$


26

27


Within & Between group (co)variance

28

Within & Between group (co)variance

29

Standard what?

$$SE_{\bar{X}} = \sqrt{\frac{V_X}{n}}$$

30

A simple hypothesis test

$$t = \frac{\bar{X} - \mu}{SE_{\bar{X}}}$$

31

Modeling reality

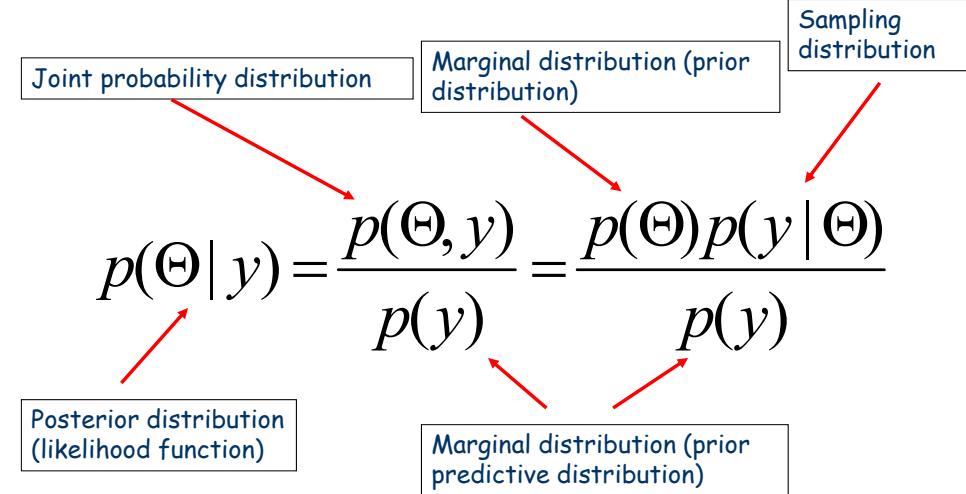
Observations =

Nuisance parameters +

Parameters of interest +

Unexplained part

32



?

33

Bayes' Rule, 1763 (1702-1761)

34

Hossein Jorjani

Department of Animal Breeding & Genetics
Swedish University of Agricultural Sciences
Box 7023
S - 750 07 Uppsala, Sweden

35

36