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In this chapter, the central dogma of QG, represented in the conceptual
equation P = G + E, is redefined in form of the more operationally
(statistically) suitable equation'y = Xf +Zu + €. Afterwards, assumptions
of the classical QG theory are briefly described. Departures from these
assumptions can, in most cases, be handled as minor anomalies within
the framework of the classical QG theory by treating them as nuisance
parameters. However, some of the departures have been handled by
making them a parameter of interest, and include them specifically in
the model.

4.1 Central dogma of QG

The central dogma of the classical quantitative genetics, attributed to
the founders of quantitative genetics, Fisher (1918), Wright (1921), and
Haldane (1924) (see also Haldane (1932)!), is nowadays commonly
written as:

P=G+E (4.1)

where,

P = the phenotypic value,
G = the genotypic value, and
E = the environmental value.

Founders of the quantitative genetics did not necessarily use the symbols
P, G, and E, or the short definitions mentioned above. For example,
Fisher (1918) used the words “feature” and “measurement” instead of
the phenotypic value. Further, Fisher did not use the words genotypic
value, instead he used the words "genetic value” and "genic value” (the
definitions of which will be presented shortly). Furthermore, he defined
environment as “arbitrary external causes independent of heredity”. Wright
(1921a) did not explicitly use the symbol P in any equation, however the
words phenotype and genotype were used by him. With regard to the
environment, Wright partitioned environment into a “tangible” part (with
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1: Haldane’s contributions to QG theory:
Contributions of Haldane to QG theory
is perhaps best described as “diffused”, in
the sense that it is difficult to pinpoint any-
thing that is directly quantitative genetics
in his massive publications from (1924)
and onward. However, many elements of
his contributions to population genetics
theory gradually found their ways to QG
theory. His earlier contributions are well
summarized in his book, entitled “causes
of evolution” (1932). It is from this book
that his many significant contribution to
QG theory can be observed.
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2: Central Limit Theorem and normal
distribution: Central Limit Theorem and
normal distribution will be discussed in
more details in Section 5.1.

symbol E), and an "intangible” part (with the symbol D). In Haldane
(1924) the word genotype was not used, and the word “character” was
used instead of phenotype. So, it can easily be concluded the the symbols
and what they stand for is just the result of a tacit agreement among the
the people using them since 1920’s. There is nothing sacrosanct about
them. We will see later that we may have to change many symbols to
bring more clarity into the discussion.

The first thing to note about the model in Equation 4.1 is that it is
an additive model. It can be speculated, as Gianola* has done, that
alternative specific models such as P = GE,P=EC,orP = (G +E)°E
could have been suggested. The simple equation P = G + E has some
strong underlying assumptions (which will be discussed in the next
section). The minimum that founders of QG theory could do was to
start with an assumption-free equation such as P = f(G,E),or P « G, E.
However, in the light of the history of QG theory (see Section 3.2 and
Section 3.3), the use of an additive model is understandable. In other
words, an additive model is a natural consequence of invoking the central
limit theorem and normal distribution 2 .

Another aspect of Equation 4.1 that is not clear is whether P, G, and E
are referring to an individual or to a population. As longas P = G + E is
a conceptual definition, it does not matter so much if, e. g. P refers to an
individual or a population. However, if the purpose of the model is to
describe the state of a population, perhaps it it is better to write Equation
4.1 as:

P; =G;+E; (4.2)

Equation 4.2 is still a conceptual equation, and if we want it to be
operationally useful, i.e. to be a statistically usable model, then Equation
4.2 needs to be modified by adding a residual (or an error) term, using
the symbol ¢, as in:

Pi=G;+E; +¢€; (4.3)

We can see that Equation 4.3 conforms better to the specifications sug-
gested by Wright (1921a) who separated the environment into a "tangible”
part, here symbolized by E, and an “intangible” part, here symbolized by
€. In the modern view, the term € is not restricted only to the “intangible”
part of the environment, but it is also pertinent to all uncertainties in
the model. In other words, € is a reflection of the factors that we have
neglected to include in the model, and our ignorance of all other factors
that affect the main variables of interest, i.e. P, G, and E.

A tacit assumption in Equation 4.1 to Equation 4.3 is that all elements
are expressed as deviations from their mean value. If we express each
element as the phenotype is measured, then we need to add a population
mean (1) to the equation:

Pi:H+Gi+Ei+€i (4.4)

* Kindly provided by D. Gianola (2015) from a presentation entitled: A brief history of statistical
methods in animal breeding. See also the presentation by Gianola at the HSTalks: https://
hstalks.com/t/3440/a-brief-history-of-statistical-developments-in-ani/.


https://hstalks.com/t/3440/a-brief-history-of-statistical-developments-in-ani/
https://hstalks.com/t/3440/a-brief-history-of-statistical-developments-in-ani/

We can already see that the equation representing the central dogma
of QG theory is growing in complexity from Equation 4.1 to Equation
4.4, and in future discussions the notation may become too complex to
render clarity. Using matrix notation may facilitate further development
of the equations. In matrix notation, Equation 4.4 can be written as:

P=u+G+E+e (4.5)

Elements of Equation 4.5 deserve separate discussions. Let’s first direct

our attention to E;, i.e. the environments that we are explicitly modeling.

An underlying assumption of Equation 4.1 to Equation 4.5, is that all
individuals, or at least all individuals with the same genotype for the trait
under study, are randomly distributed across all environments. But this
is a very strong assumption. Conceptually, one can think of a population
consisting of an infinite number of individuals, for any specific genotype,
that are equally distributed in every conceivable type of environment. But
this is unrealistic. In reality, and as an example, dairy cows are unique,
they do not come in an infinite number of copies (clones), and any cow is
confined to only one environment (herd). Therefore, we need to specify
which individual has been in which environment. This can be done by
means of an incidence matrix (here symbolized by X ).

As interesting as the explicitly modeled environmental factors may be,
they are probably not the main focus of a QG analysis. The same is true
of the population mean. So, we may treat them as nuisance parameters*,
and include them in a column vector called B, where = [u E]’, and the
also use the incidence matrix X, to relate each element of P to different
elements of 5. Consequently the equation becomes:

P=Xg+G+e¢ (4.6)
There are also some assumptions related to the element G (the genotypic
value) in the above equations. From these equations it is not clear if the
values of P for different individual are independent of each other or
somehow they are related to each other through G. To allow for a proper
specification of this relationship, it is better to use an incidence matrix
(here symbolized as Z) that relates different values of P to G. At the
same time, and in order to make the distinction clear, we may use a new
symbol (u) instead of G. Consequently, Equation 4.6 changes to:

P=Xg+Zu+e (4.7)
Finally, both in statistics and in animal/plant breeding literature, the
(phenotypic) observations are usually shown by another letter® , namely
y. Therefore, in order to create harmony between the notations from
different disciplines, it is better to re-write Equation 4.6 as:

y=Xg+Zu+e (4.8)
Comparing Equations 4.1 and 4.9, we can see that we have moved from
a conceptual definition of QG theory’s central dogma to an operational
definition that easily lends itself to statistical analyses of data relevant
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3: Incidence matrix: In statistical genetics,
the incidence matrix, also known as the
design matrix, is a matrix consisting only
of 0 and 1, with one row for each obser-
vation, and one column for each level of
the modeled effects. For example, if there
are 4 cow observations from 2 herds, the
incidence matrix X will have 4 rows for 4
cows, and 3 columns for the population
mean and the 2 herds.

4: Nuisance parameter: In statistics, a nui-
sance parameter is a parameter that is not
of primary interest.

5: Symbols have no inherent meaning:
In the evolutionary quantitative genetics,
instead of P or y, usually the symbol z is
used (see e.g. Lynch and Walsh (1998) and
Walsh and Lynch (2018)). As mentioned
before, there is nothing sacrosanct about
symbols.
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to QG studies. Additionally, Equation 4.9 removes some opacity of
the underlying assumptions, as well as providing the means to specify
different assumptions and models in a convenient way. This will also
make it easier to refer estimation and prediction issues to the literature
specialized in such areas (e. g. Mrode (2013), Schaeffer (2019), and Sorensen
and Gianola (2002)).

y=Xp+Zu+e (4.9)

4.2 Classical Quantitative Genetic Model

Predecessors of Fisher, such as Yule (1902, 1906) and Pearson (1904a), in
their efforts to reconcile the continuous variation with the Mendelian
genetics made some implicit or explicit assumptions, which after modifi-
cations by Fisher (1918), can be summarized as follows:

1. There are n bi-allelic loci, each with a small effect on the variance
of the trait under under consideration;

2. Alleles within a locus may may have any frequency, show non-
additive (i.e. dominance/recessive) relationship, and non-additivity
may be of any degree;

3. Alleles across loci may show non-additive (i.e. epistatic) relation-
ship, and non-additivity may be of any degree;

4. Non-additivity and environment reduce the correlation between
relatives.

4.2.1 Central Limit Theorem

A summary of this chapter.
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