
Nature of QG traits 2
2.1 Reach of Single Locus Model 9
2.2 All traits are polygenic . . . . 10
2.3 Evidence from biochemistry . 11
2.4 Evidence from Genomics . . 12
2.5 Evidence from mutation rates 13
2.6 Long-term selection . . . . . 13

Authors: Author 1, Author 2, ..., H. Jorjani
Last update: 2019-12-20

Inside the black box

First, the predictions of quantitative genetics depend upon the structure of
genome. In particular, we need to know the number of loci, their linkage
relations, their allelic frequency distribution and the mutational and recom-
binational sources of new variation. Second, we need to know the relations
between gene and organism, how gene action, in particular environments, is
translated into phenotype. The knowledge about these questions can come to
us only by opening up the black box whose outer shape we have so far been
describing, and seeing what the machinery inside really looks like. This is the
task of molecular and developmental genetics and some general knowledge is
already available to us from the recent activity in these fields. Our models of
quantitative genetics must either take cognizance of these findings or else
show that they are, in fact, irrelevant because of the robustness of our theory.

Richard Charles Lewontin (1976)

The purpose of this chapter is to show

I The existence of genetic variation at all biological levels,
I The single locus model of genetics is unrealistic and inadequate,
I A more realistic model is based on involvement of hundreds to

thousands of loci in phenotypic expression of any trait.

2.1 Reach of Single Locus Model

Single locus models, in any branch of genetics, have been the starting
point of developing new theories, and they are excellent pedagogical first
steps in teaching (as we will see in Part V). In every species, thousands
(if not tens of thousands) of traits are attributed to a single nucleotide
mutation, each in a single locus. At the first glance this seems to be the
case. However, a deeper investigation of these traits reveal a complicated
picture. Take for example, some easily accessible traits in humans, such
as the pigmented iris (being blue or not), freckles, and diabetes. These
examples of human traits are used here because they are so easy to
observe.

In humans, eye color depends on the amount of the pigment Melanin
in two layers of cells in the eye (one of which is only two rows of cells).
There is variation in the number of such cells among individuals, and
also during the life time of an individuals. The number and size of
the Melanin particles also shows variation, and they have different "life
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1: Wright (1921): In this book Wright
(1921) refers to five publications in the
journal Genetics by Wright (1921b; 1921c;
1921d; 1921e; 1921f)

2: The Infinitesimal Model: For a full
description of the infinitesimal model see
Chapter 5

Figure 2.1: Distribution of sum of 12 ran-
domly generated numbers from a uniform
distribution in the range 0 to 1

cycles". The color of the eye depends on the interaction between the shape
of the eye ball and the existing Melanin pigments, and how the light is
reflected from the eye because of this interaction. In fact, in humans, the
blue color of eye is not related to any blue pigment at all, but due to the
Tyndall effects (similar to the Rayleigh scattering which gives the sky its
blue color). In other species a variety of mechanisms contribute to the
eye color. For example, in birds there are oil droplets that affect the eye
color irrespective of the background pigmentation.

Form your own opinion

No references have been provided in
this section! Convince yourself that
the arguments put forward in this sec-
tion are valid. Search in the literature
to find references providing enough
evidence that show single mutation /
single locus models are just the "first
answers".

Do the searching for several traits until
you can form your own general opin-
ion about the so-called "single mutation
/ single locus models".

In the case of freckles in humans, there is variation among individuals
in the number of freckles per square centimeter. Also, there is variation
with regard to the color contrast. Further, there is variation in the spread
of freckles, limited to around the nose, or spread wider to other parts of
the body (especially upper body).

Another frequent example is diabetes, for which many questions raise
the doubt about single locus explanations. For example, is the onset of
the disease at the same age for all patients? Do all the patients have the
same level of blood sugar at the each incidence of disease? Does everyone
need the same amount of insulin?

There are many details related to each of the above examples. One can
easily draw the conclusion that all aspects of a "simple" trait such as
eye color, freckles, or diabetes, cannot be explained just by the single
mutation / single locus model. Single locus models are good pedagogical
starting points, but their reach to explain the nature of the traits are short
of being satisfactory.

2.2 All traits are polygenic

The entire field of quantitative genetics, and much of the field of popu-
lation genetics, deal with continuous variation at the phenotypic level.
The most important genetic model for studying continuous variation,
the infinitesimal model (Fisher (1918), Wright (1921)1 ), maintains that
the loci affecting continuous variation follow the Mendelian rules of
transmission genetics. However, among other things, there are two main
differences between the simple single locus models and the infinitesimal
model 2 :

I a large number of loci affect the character/trait under consideration;
and

I the effect of each locus on the phenotypic variance is small.

Combining these two properties of the infinitesimal model enables us to
invoke central limit theorem, and consequently the normal distribution
for genotypic and environmental values and their sum, i.e. phenotypic
values. As an illustration Figure 2.1 assumes there is a trait affected
by a large number of loci (i. e. 12 loci), each with a small effect on the
genotypic value. The sum of the effect of these 12 simulated loci shows
an approximate normal distribution of the genetic effects.

There are several lines of evidence that suggest the infinitesimal model is
actually not far from being true.
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2.3 Evidence from biochemistry

Each cell contains many types of molecules. Here, we concentrate on
proteins, because some of them, namely enzymes, have unequivocally
important roles in life. Techniques for detection of proteins have evolved
a lot since 1950’s, and consequently the number of detected proteins
has also increased. Simple gel electrophoresis techniques could detect
tens of different proteins in any biological sample (see e.g. Hubby and
Lewontin (1966), andLewontin andHubby (1966)).With the advent of two-
dimensional gel electrophoresis (O’Farrell, 1975) number of detectable
proteins increased to thousands of proteins (Magdeldin et al., 2014).

A little bit of history

The two papers by Hubby/Lewontin
had a profound effect on genetics. The
main take home messagewas the claim
thatmost of the variation exists within
populations. Two immediate effects of
these two papers were:

A) The concept of race in humans, and
breed in animals/ plants lost their ge-
netic justification; and

B) The existence of huge amounts of
variation within each population was
one of the major igniting stuff of the
Neutral Mutation Theory of Molecu-
lar Evolution by Kimura (1968).

Using mass spectrometry, and depending on how proteins are defined,
between several hundreds of thousands to close a million proteins can
be identified in humans (Wilhelm et al., 2014). Incidentally, the number
of proteins for human and Arabidopsis thaliana are similar (see Proteomics
Database∗).

Development of different omic techniques hasmade it possible to routinely
detect several thousands of protein molecules in each cell line (see e.g.
Zhu et al. (2008), and Chang et al. (2011)). Geiger et al. (2012) could show
that the number of proteins in any cell line of human is, on average,
more than 10,000. The majority of the cell proteins are housekeeping
proteins, i. e. they have the role of maintaining basic cell functions and
are found in all cells. The Human Protein Atlas†, based the work of
Uhlén et al. (2015), puts the number of housekeeping proteins close to
10,000. This is in agreement with the estimates by Geiger et al. (2012). The
housekeeping proteins are coded by housekeeping loci (e.g. Eisenberg
and Levanon (2013) and Zhang et al. (2015)) whose number, because
of different mechanisms, is not as many as proteins. Nonetheless, the
number of loci (housekeeping or otherwise) expressed in any cell line is
in the order of several thousands.

From a biochemical perspective virtually all enzymes are bound together
in (linear or branched) chains. It is easy to see the interaction of the
enzymes just by looking at any biochemical chart. This means that all
enzymes are virtually connected to each other. According to the theory
of "Metabolic Control Analysis" (see e.g. Kacser and Burns (1979), Kacser
and Burns (1981), Hofmeyr and Cornish-Bowden (1991), and Bagheri and
Wagner (2004)) flux of any enzymatic chain is affected by all enzymes in
that chain. However, effect of each enzyme follows a hyperbolic function.
Following a suggestion by Hartl et al. (1985), it has also been shown that
the control coefficient exerted by any enzyme is subject to change under
selection (Dean et al. (1986); Dykhuizen et al. (1987)). Consequently, effects
of some enzymes may be so small in certain generations that their effect
might not be measurable in small sample sizes. Kacser (1989), without
any reference to modern techniques of identifying proteins/enzymes,
postulated that any quantitative trait may be under control of a very large
number of enzymes, i. e. "say 5000".

∗ Proteomics Database: https://www.proteomicsdb.org/. Accessed 2019-11-28.
† The Human Protein Atlas: https://www.proteinatlas.org/humanproteome/tissue/
housekeeping. Accessed 2019-11-25.

https://www.proteomicsdb.org/
https://www.proteinatlas.org/humanproteome/tissue/housekeeping
https://www.proteinatlas.org/humanproteome/tissue/housekeeping


12 2 Nature of QG traits

3: Heritability: The concept of heritability
will be discussed in Chapter 9.

4: Estimated number of loci involved in
a quantitative trait: Figure 2 in Visscher
et al. (2017) is a must see figure.

2.4 Evidence from Genomics

Results of the various genome projects put the total number of functional
chromosome segments for the most important animal and plant species
to an average of about 25000 (between 15000 and 50000). Viruses and
bacteria have usually less than 1000 such segments, arthropods less than
15000, mammals more than 20000, and plants more than 25000 (e.g.
Rogers (2017)).

Terminology: locus (pl. loci)

The term "chromosome segment" (whether functional or not) has had
many equivalents since the days of re-discovery of Mendel’s rules.
Each of these has been connected to the prevailing understanding
of their role at a specific time period. The most famous equivalent
happens to be the most controversial (see e.g. Bromham (2016) and
Portin and Wilkins (2017)).

In this book, the term locus, and its plural loci, are used.

The question of interest is the following: given the information that there
are 15000 to 50000 functional segments, and given the information that
up to 10000 of them are expressed in each cell line, how many of them
have a measurable effect on a trait?

This question has received special attention in human genetics, where
individuals with certain phenotype (usually a disease state) are compared
to other individuals free from that phenotype. The techniques used in the
published studies have been the most recent technique disposable to the
investigators at the time of study. For example, in a study of seven brain
tumors Watson et al. (2001), and Shannon et al. (2002) used expression
arrays, and found differential expression for 196 loci out of 1013 loci
studied.

More than a decade later, single nucleotide polymorphism (SNP) arrays
were used by Wood et al. (2014) in a meta-analysis of studies in stature
in humans (see also Marouli et al. (2017)). They found close to 10000
SNPs that collectively could explain about 1/3 of stature’s heritability
value3 . The number of detected loci (in most cases, SNPs) affecting a trait
(any trait) increased almost exponentially in the first 10 years of genome
wide association studies (GWAS) from a few hundreds in 2008 to a few
thousands 10 years later (Visscher et al. (2017)4 ). For intelligence, a trait
difficult to define, Savage et al. (2018) found more than 12000 variants,
clustered in 205 loci, that collectively explain up to 5.2% of the variance
of intelligence.

Terminology: Variant

The term "variant", often combined with other words to form various
terms, such as "sequence variant", "common variant", "rare variant",
refers to any polymorphism, i. e. a mutation compared to the "reference
genome", at the nucleotide level. This term can be used irrespective of
the effect that the polymorphism might have. In contrast, the term
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"causal variant" is a polymorphism that is assumed to have a certain
effect on the phenotype of interest.

In humangenetics, high levels of genome-wide significance (say, ? < 10−8)
are important because the detected loci may be used in the design of
diagnostic tools or therapeutics substances. Therefore, the number of
loci with measurable effect for human traits is probably underestimated.
In contrast, in animal breeding the significance level for any SNP is not
important, and usually not reported, because the sum of the effects of all
SNPs is of interest. There are, however, many exceptions to this rule (e.g.
Bolormaa et al. (2010) and Bolormaa et al. (2014) for beef cattle). In a study
in dairy cattle, Jiang et al. (2019), using data on almost 300000 Holstein
cows, observed genome-wide significant effects (? < 10−7) for between
15 loci (heifer conception rate) and 15215 loci (milk protein percentage).
According to Animal QTL Database‡ in cattle alone more than 130000
QTLs, related to more than 634 traits have been detected.

2.5 Evidence from trait-based versus
locus-based mutation rates

Close examination of natural and laboratory populations reveals that per
trait rate of mutation is between 103 and 104 times larger than per locus
rate of mutation (see e.g. Houle et al. (1992), Keightley and Hill (1992),
Santiago et al. (1992), and Mackay et al. (1994)). By comparison of these
two rates one can easily deduce that the number loci affecting a trait may
be as high as 1000-10000.

2.6 Evidence from long-term selection
experiments

As we will see in Chapter 27 selection on a single locus is very effective
in changing the frequency of the favorable allele. We will also see that as
the number of loci affecting a trait goes up, the change in the frequency
of the favorable alleles becomes smaller and smaller (Crow and Kimura,
2009, Ch 5). Consequently, continued change of mean in an experimental
population indicates the involvement of many loci. Of course, de novo
mutations contribute to the maintenance of genetic variance in spite of
selection (see Chapter 26).

There are many old and new long-term selection experiments that have
shown significant response to selection after many generations: e.g. in
Drosophila (Yoo, 1980), mice (Bünger et al., 1998; Holt et al., 2005), maize
(Dudley, 2007), chicken (Dunnington et al., 2013), and many more.

To estimate the number of loci affecting a trait, different quantitative
or molecular genetic methods can be employed. In the longest running
selection experiment (the Illinois Long-Term Selection Experiment in
Maize), the cumulative response to selection for oil and protein contents

‡ Animal QTL Database: https://www.animalgenome.org/cgi-bin/QTLdb/index. Ac-
cessed 2019-12-20.

https://www.animalgenome.org/cgi-bin/QTLdb/index
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have been used to arrive at an estimate of up to 200 loci involved in these
traits (Dudley and Lambert, 2010). Different molecular methods have
resulted in estimates ranging from tens of loci to a few hundreds SNP
cites (Moose et al., 2004, Laurie et al., 2004, see also the commentary by
Hill, 2005). In mice, Bünger et al. (1998) estimated about 92 loci to be
involved for the trait body weight at six weeks of age. In case of chickens
Johansson et al. (2010) estimated hundreds of loci to be involved in the
body weight.

In this chapter, itwas claimed that "single locusmodels" are inadequate. Fur-
ther, abundant evidence from several lines of arguments were presented
to support the claim that many loci affect each and every quantitative
trait. The number of loci mentioned in this chapter are all conserva-
tive estimates. Given larger data sets and/or better analytical methods,
would enable the detection of further loci that hitherto have not been
detected.
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