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Let no one unversed in statistics enter here

It is interesting that one can obtain some results without invokingMendelism
at all, but merely use purely statistical ideas of correlation and regression. One
can go further, I believe. The whole area of selection can be approximated by
purely statistical ideas of correlation and regression. The ideas of Mendelism
merge with these ideas, as Fisher showed (more or less), and the fact that
the theory does not need Mendelism in some respects, and one can almost
say, does not use Mendelism intimately is, I think, a reason for it having
a moderate degree of robustness in relation to assumptions. Apart from a
difficulty I shall mention later, one could proceed as follows.

Let there be a population; let rules of forming mating couples be defined in
terms of metric traits of individuals and/or in terms of relationship; let there
be selection of individuals on the basis of metric traits or metric traits of
related individuals; and finally let the offspring be measured. Then without an
atom of formal Mendelism and with a large data set, the joint distribution of
offspring and parents can be determined. One can examine this distribution
and determine a prediction equation, which one can then apply for a few
generations. The only flies in the ointment for this proposal are that every
covariance would have to be determined from data and not inferred from,
say, a coefficient of relationship and heritability, and large data sets would be
needed to control sampling error.

So one could have a completely empirical selection procedure and a purely
empirical process of obtaining a prediction of the result of continued selection.
I suggest that this type of thinking should not be dismissed as a cranky idea.
The reason that some predictions of the results of selection theory seem to
work is that they are based on a process rather close to what I have sketched.

Oscar Kempthorne (1976)

This chapter aims at showing that quantitative genetics theory is built
upon many theories from many other fields. Reading and understanding
of this book does not need full mastery of those other fields. But if the
reader is inclined to further develop the quantitative genetics theory,
then deeper understanding of other fields is necessary.

There are some concepts of biochemistry, statistics, molecular genetics,
Mendelian genetics, etc. that you should know. These are listed below.
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1.1 Mendelian genetics

Mendelian genetics in this book is defined as the study of the inheritance
of specific alleles in simple matings (crosses) or limited pedigrees. The
focus of interest in Mendelian genetics is the genotype of an individual.
Therefore, we either follow the process of inheritance of certain specific
alleles from parents with known genotypes to their offspring, or alterna-
tively we trace back the origin of certain specific alleles from offspring
with known genotypes to their parents.

Many ideas within the field of QG have their roots in a time before the
re-discovery of Mendel’s rules (Mendel (1866), and c.f., Bateson (1901)) in
1900 by Correns, Tschermak, and deVries. As an example, the reliance on
the normal distribution can be traced back to the work of Galton (1886).

A little bit of history

There are some doubts about the
claims of independent re-discovery by
these three gentlemen, and also if
they had a correct understanding of
Mendel’s work (FIND REF). It took 18 years from the re-discovery of Mendel’s rules until a formal and

general reconciliation ofMendelian genetics and normality of observation
for continuously distributed traits was formulated by Fisher (1918). The
Mendelian concepts that Fisher used were very few and very simple
i.e.:

I Bi-allelic inheritance;
I Alleles within a locus may show statistical interaction (any degree

of dominance / recessive relationship);
I Alleles across loci may show statistical interaction (any degree of

epistasis);
I Different loci may have some degree of linkage.

Fisher (1918) showed that the loci underlying continuously distributed
traits follow the usual rules of Mendelian inheritance. However, the usual
Mendelian ratios cannot be observed for these traits because many loci
are involved. Therefore, Kempthorne (1976) is justified to downplay the
role of Mendelism, because Fisher (1918) did not rely heavily on the rules
of Mendelian genetics.

There is, however, an educational / pedagogical source of misunder-
standing among new students of QG who have just a little knowledge
of Mendelian genetics. The reason is that many textbook examples of
Mendelian genetics concepts might lack generality. An example will
make this point more clear.

The concept of dominance is most often introduced in the genetic text-
books by examples of an allele in a locus being completely dominant or
recessive compared to the other allele in that locus. The seven traits used
by Mendel in his experiments are usually the first examples. By the time
that other related concepts (such as partial dominance, expressivity, and
penetrance) are introduced the student has a firm understanding of the
complete dominance with many examples in the mind. This may lead to
the misunderstanding that complete dominance is the rule, while in fact
complete dominance is just an exception. The same argument (though
somewhat more complicated) can be used for epistasis.

In summary, development and understanding of QG theory does not
need a lot of knowledge from Mendelian genetics. However, the more
knowledge you have from Mendelian genetics, it becomes easier to
understand the rationale behind assumptions of QG.
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There aremanygood introductorygenetics textbooks that coverMendelian
genetics quite well. Any of the following textbooks (and many similar
ones) can be consulted to cover the needs:

I Griffiths et al. (2015) An Introduction to Genetic Analysis
I Pierce (2012) Genetics: A conceptual approach
I Sanders andBowman (2015)GeneticAnalysis - An IntegratedApproach

1.2 Molecular genetics

The termmolecular genetics is used here for a wide group of fields that use
the DNA/RNA structure (and other molecules), in any form and length,
to address many important biological questions. As such, molecular
genetics is not needed for the development of QG theory. The majority of
QG models are dependent on the involvement of many loci in expression
of continuously distributed traits. The evidence provided by recent
advances of molecular genetics certainly justify such QG models.

For the time being, general rules of how the phenotype (trait measure-
ments) are mapped to genome are still not available. The reason is that
there are many categories of DNA/RNA sequences, for which the details
of how they affect the phenotype have not been elucidated yet. For
example, the role of three dimensional structure of the chromosomes
and its relationship with the position effects (expression) of sequence
variants are are not fully understood yet (see e.g. Collas et al. (2019),
Meaburn and Misteli (2019), Rowley and Corces (2018), and Zheng and
Xie (2019)). Another example is related to the role of repetitive sequences
in the position effect phenomena (see e.g. Keel et al. (2019); Liu, X. Chang,
et al. (2019)).

Therefore, there are reasons to believe that the black-box theory of QG
is still valid, and useful. A good grasp of molecular genetics, however,
contributes to better understanding of underlying assumptions of QG.
The general textbooks mentioned above provide enough information
about molecular genetics as well. Additionally, the following textbooks
(and many similar ones) can be consulted:

I Alberts et al. (2015)Molecular Biology of the Cell
I Strachan et al. (2015) Genetics and Genomics in Medicine

1.3 Biochemistry and biochemical genetics

Much of the biochemistry related to genetics is covered by the books
mentioned in the previous two sections. There is a part of biochemistry,
enzyme kinetics, that is most often not covered by genetic books. Un-
derstanding of the enzyme kinetics, specially models such as Metabolic
Control Analysis (MCA), introduced by Kacser and Burns (1981), are very
important to understand both dominance and epistasis. The following
textbooks have enough coverage of the enzyme kinetics to understand
models such as MCA:

I Lehninger et al. (2013) Lehninger principles of biochemistry
I Tymoczko et al. (2015) Biochemistry, a short course
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1.4 Mathematical / Statistical genetics

Development of QG theory has required many, for biologists, compli-
cated mathematical /statistical concepts. It is noteworthy that many
contributions to QG theory have been made by scientists who have actu-
ally been statisticians (or have had very strong statistical backgrounds).
However, this book restricts itself to the simplified versions of equations
that require ordinary college level of mathematics / statistics. In order
to keep the level of complexity at an acceptable level, for the general
biologists, derivation of equations from first principles are not shown
(and the reader is referred to other sources for the derivations). For basic
mathematical statistical matters the following books (and many similar
ones) can be consulted:

I Casella and Berger (2002) Statistical inference
I Hogg et al. (2019) Introduction to mathematical statistics
I Larsen and Marx (2017) An Introduction to Mathematical Statistics

and Its Applications
I Lehmann and Casella (1998) Theory of point estimation
I Maindonald and Braun (2010) Data Analysis and Graphics Using R -

an Example-Based Approach
I Wackerly et al. (2008)Mathematical Statistics

Another issue is that although many QG concepts can be shown in
simple equations, the estimation of variables included in those equations
may not be trivial, and may need sophisticated methods. For example,
the concept of heritability can be shown by several simple equations,
including ℎ2 = +�/+% . But, given the nature and structure of the data,
the estimation can be quite tricky. It can be argued that the estimation and
prediction are outside of the domain of pure QG. For these matters the
following sources are essential:

I Mrode (2013) Linear models for the prediction of animal breeding values
I Schaeffer (2019) Animal models
I Sorensen andGianola (2002) Likelihood, Bayesian andMCMCmethods

in quantitative genetics

1.5 Population genetics

In this book, population genetics is defined asthe branch of genetics
studying changes of allele and genotype frequencies in populations. Like
any other branch of genetics, population genetics rests firmly on the
foundations laid down by the Mendelian genetics.

The focus of interest in population genetics is the frequency of alleles
or genotypes in populations. Therefore, we either follow the process of
inheritance of certain specific alleles from one generation to the next, or
alternativelywe trace back the patterns of allele and genotype frequencies
in one generation to the processes that have been at work in the previous
generations. Even though individuals are building blocks of a group,
the genotype of any specific individual is of less interest in comparison
to the dynamics of change in allele and genotype frequencies in the
population.
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What is important in population genetics is not what genotype any
individual has, but how and why the frequency of alleles and genotypes
in one generation or population differs from the frequency of alleles and
genotypes in another generation or population. Population genetics is all
about processes that are the causes of changes and the patterns that they
create. It’s all about processes and patterns, patterns and processes.

Population genetics

Population genetics is the study of allele and genotype frequencies
across space (populations) and time (generations).

Population genetics is the science of patterns of allele and genotype
frequencies, and the processes that change these patterns.

A central subject in population genetics is the relationship between allele
and genotype frequencies in one or more loci, and (Darwinian) fitness.
Of course, there is no necessity for all alleles and loci to confer a non-zero
fitness value, i. e.many alleles and loci are not under selection and have
no adaptive role. The theory of QG stands directly on the foundation
laid down by population genetics, except for the fact that it is the mean
and variance of phenotypic measurements that are under under scrutiny.
Similarly quantitative genetics can be defined as:

Quantitative genetics

Quantitative genetics is the study of phenotypic means and variances
across space (populations) and time (generations).

Quantitative genetics is the science of patterns of phenotypic means
and variances, and the processes that change these patterns.

Thus, a good knowledge of population genetics is of utmost importance
for development of QG theory, and understanding QG’s present status.
Further, if (and only if) there is a gap in the QG theory, one can conve-
niently use population genetics theory if an answer can be found there.
The only thing that one needs to consider is the relationship between the
fitness value (often symbolized by w or s) and selection differential (often
symbolized by S or i; Robertson (1966), and Price (1970), see also Walsh
and Lynch (2018) (Chapter 6)).

At the undergraduate level, the following books (and many similar ones)
can be used by the readers:

I Hamilton (2009) Population genetics

At the postgraduate level, the following books (and many similar ones)
can be used by the readers:

I Crow and Kimura (2009)An introduction to population genetics theory
I Ewens (2004)Mathematical population genetics. 1: Theoretical introduc-

tion
I Hartl and Clark (2007) Principles of population genetics
I Nielsen and Slatkin (2013) An introduction to population genetics -

Theory and application
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