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Instructions for reading this compendium 
 

This compendium has been written in the same way as  
Count Lazlo de Almásy wants Rudyard Kipling to be read to him. 

 
You’d better read it in the same way as Kip reads it. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

WARNING! 
This compendium is under construction 

 and is not, by any means, complete. 
However, in combination with lectures handouts,  

it gives a fair coverage of the subject. 
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POPULATION GENETICS 
Population genetics is a branch of genetics studying changes of allele and 
genotype frequencies in populations. Like any other branch of genetics, 
population genetics rests firmly on the foundations laid down by the 
Mendelian genetics.  
 
In Mendelian genetics the inheritance of specific alleles in simple matings 
(crosses) or limited pedigrees is studied. The focus of interest in Mendelian 
genetics is the genotype of an individual. Therefore, we either follow the 
process of inheritance of certain specific alleles from parents with known 
genotypes to their offspring, or alternatively we trace back the origin of 
certain specific alleles from offspring with known genotypes to their parents.  
 
In population genetics the frequency of specific alleles or genotypes in 
(usually) large groups of individuals is studied. The focus of interest in 
population genetics is the frequency of alleles or genotypes in populations. 
Therefore, we either follow the process of inheritance of certain specific 
alleles from one generation to the next, or alternatively we trace back the 
patterns of allele and genotype frequencies in one generation to the processes 
that have been at work in the previous generations. Even though individuals 
are building blocks of a group, the genotype of any specific individual is of 
less interest in comparison to the dynamics of change in allele and genotype 
frequency in the population. 
 
What is important in population genetics is not what genotype any individual 
has, but how and why the frequency of alleles and genotypes in one 
generation or population differs from the frequency of alleles and genotypes 
in another generation or population. Population genetics is all about 
processes that are the causes of changes and the patterns that they create. It’s 
all about processes and patterns, patterns and processes. 
 
 
DEFINITION 
Population genetics is the study of allele and genotype frequencies across 
space (populations) and time (generations).  
 
Population genetics is the science of patterns of allele and genotype 
frequencies and the processes that change these patterns. 
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LET’S STAND STILL AND TAKE A PICTURE 
A very good start point for the study of population genetics would be to find 
a population in which frequency of alleles and genotypes are constant from 
generation to generation. If such a population existed, then we could 
examine it thoroughly. 
 
Unfortunately, no real population is in steady-state equilibrium. There is 
always the possibility of something changing from generation to generation. 
What is even worse is that there might be a change of allele frequencies in 
two opposite directions, because two evolutionary processes with opposite 
effects may be at work. Then, what we may observe is the constancy of allele 
frequencies, but it doesn’t mean that there hasn’t been any change. We just 
cannot observe it. The effects of the two evolutionary processes have 
cancelled each other out. We should be careful and not fall into a false sense 
of “security”. 
 
Therefore, the start point for the study of population genetics has to be an 
imaginary population. In other words, we need a “model”.  
 
In population genetics two different, albeit related, concepts are used as the 
starting point for the study of evolutionary processes and patterns. The first 
one is the Hardy-Weinberg equilibrium (HWE) also called Hardy-Weinberg 
principle or Hardy-Weinberg law. The second one is the concept of idealized 
population. Here, I combine these two concepts with each other and, in 
anticipation of a better name, call it Hardy-Weinberg model HWM). 
 
 
HARDY-WEINBERG MODEL: PART 1 
Imagine a population with the following properties: 
 
Population is large; 
Organism is diploid; 
Each locus has two alleles; 
The locus is not sex-linked;  
Allele frequencies in males and females are equal; 
Genotypes can be distinguished clearly; 
Reciprocal mating of gametes are equal (i.e. A1A2 = A2A1)  
Segregation is normal; 
Reproduction is sexual; 
There are equal number of females and males; 
Matings are at random; 
There is no mutation; 
There is no migration; 
There is no selection; 
Generations are non-overlapping. 
 
 
 
 
 
DEFINITION 
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According to the Hardy-Weinberg model (HWM) if a population fulfills the 
above mentioned properties (assumptions), then allele frequencies and 
genotype frequencies are constant from generation to generation and given 
the information on any of them, the other one can be calculated. Such a 
population is usually called a population in Hardy-Weinberg equilibrium 
(HWE) or a “base population”. Occasionally, a population in HWE may 
also be referred to as a population in “linkage equilibrium”.  
 
 
Allele and genotype frequencies in the parental generation 
Let’s put these words into symbols. Let the locus under consideration be 
called the A locus, with two alleles A1 and A2. Three distinct genotypes exist 
in this population A1A1, A1A2 and A2A2. There are a large number of females 
(Nf) and a large number of males (Nm) in the population. The population size 
can also be written as: 
 
 
 f mN N N= +  [1] 
 
Because the organism is diploid (i.e. each individual has two chromosomes), 
then the total number of alleles in the population is 2N. Now, let the 
frequency of the A1 be equal to p. Or more formally: 
 

 1
1( )

2
Number of A allelesf A p

N
= =  [2.1] 

 
Equivalently, let the frequency of the A2 be equal to q. Or more formally: 
   

 2
2( )

2
Number of A allelesf A q

N
= =  [2.2] 

 
Again because the organism is diploid and there are only two alleles in the 
population, the sum of frequencies of A1 and A2 alleles is equal to unity 
(1.0). In other words:  
 
 1 2( ) ( ) 1.0f A f A p q+ = + =  [2] 
 
 
From Equations 2.1 and 2.2 we can see that: 
 
 2

1 1 1 1( ) ( ) ( )f A A f A f A p p p= × = × =  [3.1] 
 
 1 2 1 2( ) ( ) ( )f A A f A f A p q pq= × = × =  [3.2a] 
 
 2 1 2 1( ) ( ) ( )f A A f A f A q p pq= × = × =  [3.2b] 
 
 2

2 2 2 2( ) ( ) ( )f A A f A f A q q q= × = × =  [3.3] 
 
Because A1A2 and A2A1 are equivalent to each other we can write: 
 



 

 4 

 1 2 2 1 1 2( ) ( ) 2[ ( ) ( )] 2[ ] 2f A A f A A f A f A p q pq+ = × = × =  [3.2] 
 
Yet again, because the organism is diploid and there are only two alleles in 
the population, there are only three genotypes possible, and the sum of their 
frequencies adds up to unity (1.0). In other words: 
 
 2 2

1 1 1 2 2 2( ) ( ) ( ) 2 1.0f A A f A A f A A p pq q+ + = + + =  [3] 
 
Equations 2 and 3 are summary description of allele and genotype 
frequencies in a population. As such, they represent patterns and per se give 
us little indications about processes (it is in the comparison of observed 
patterns with the expected patterns, or observed patterns in different 
populations and/or generations, that we can infer processes). 
 
 
Example 1: Cat coat color 
 
SLU students participating in the “Animal Breeding and Genetics” course in 
the Academic year 2005-2006 registered cat coat color on three cats each. 
One of the cat coat colors is related to the so-called S locus which is 
responsible for the presence of white fur in cats. Animals of Genotype SS 
have no white fur. Animals of genotype Ss have less than 50% white fur. 
Finally, animals of genotype ss have more than 50% white fur. There were 
a total of 137 cats observed: 
 
SS 27 cats  No  white fur 
Ss 72 cats  < 50% white fur 
ss 38 cats   > 50% white fur 
 
  Number of 
Genotype Number of cats S allele s allele 
SS 27 54 0 
Ss 72 72 72 
ss 38 0 76 
Total 137 126 148 

 
 

54 72( ) 0.460 46.0%
137 2

f S +
= = =

×
 

72 76( ) 0.540 54.0%
137 2

f s +
= = =

×
 

 
27( ) 0.197 19.7%

137
f SS = = =  

72( ) 0.526 52.6%
137

f Ss = = =  

38( ) 0.277 27.7%
137

f Ss = = =  
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Comments on Example 1 
You realize that the cat population under consideration in Example 1 is far 
from being large. We also don’t know if the other assumptions of the HWM 
are fulfilled or not. We just used this example to show how allele and 
genotype frequencies are calculated. 
 
 
At the time of reproduction, in the gonads and during meiosis, the diploid 
cells with two chromosome sets are divided into daughter cells with one 
chromosome set. The resulting daughter cells will further develop until they 
become gametes. Please notice that “reproduction” and “meiosis” are 
processes. The final result of these processes is the break-down of the 
genotype of the individual into distinct germinal cells that contain only one 
set of chromosomes, and therefore, only one allele for each locus. It is now 
easy to see that it is the alleles that are transferred to the offspring, and not 
the genotypes. When two gametes unite with each other to form a zygote, 
then a new genotype is formed in the offspring. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 – Schematic representation of the reproductive process and break-
down of genotypes in the parental generation and formation of new 
genotypes in the offspring generation. 
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Allele frequencies in the parental gametes 
Given the fact that the organism under study is a diploid organism, it is 
obvious that the gametes carry only one set of chromosomes and therefore 
only one single allele for each locus. If a parent is of genotype A1A1 (A2A2), 
then all of its gametes will carry A1 (A2). On the other hand, if the parent is 
of genotype A1A2, then provided normal segregation and equal viability for 
the two sorts of gametes, half of the gametes will carry an A1 allele and the 
other half an A2 allele.  
 
For the whole population, if all three genotypes (A1A1, A1A2 and A2A2) have 
equal fertility, then allele frequencies in the parental gametes should be 
equal to the allele frequencies in parental generation. 
 
Allele frequencies in the uniting gametes 
The next step in the process of reproduction is coming together of parents. 
If population is large and all male and female individuals of the parental 
generation have equal opportunity of mating with any member of the 
opposite sex, then the process of two gametes uniting with each other is like 
sampling one male and one female gamete from a vast gamete pool. 
 
Allele frequencies in the zygotes 
If the uniting male and female gametes sampled from the gamete pool are 
united with each other at random (random mating of parents) and they have 
equal fertilizing capacities, then allele frequencies in gametes are equal to 
the allele frequencies in the uniting parental gametes. 
 
Genotype frequencies in the zygotes 
In order to deduce the genotype frequencies in the zygotes, it is enough to 
multiply allele frequencies in the male and female individuals. This is shown 
in Table 1. 
 
Table 1 – Allele frequencies in the uniting gametes and the resulting 
genotypes in the zygotes when the assumptions of the Hardy-Weinberg 
model are fulfilled. 
 Female gametes and allele frequencies 

M
al

e 
ga

m
et

es
 

an
d 

al
le

le
 fr

eq
ue

nc
ie

s 

 A1 
p 

A2 
q 

A1 
p 
 

A1A1 
p2 

A1A2 
pq 

A2 
q 
 

A1A2 
pq 

A2A2 
q2 

 
 
Genotype frequencies in the offspring generation 
If all zygotes have equal viability, i.e. all genotypes have equal viability, 
then the genotype frequencies in the offspring generation will have the same 
proportions as in the parental generation. 
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Allele frequencies in the offspring generation 
If all the newborn offspring have the same viability from birth to maturity, 
then allele frequencies in the offspring generation can be deduced by 
Equation 3. In other words allele and genotype frequencies will be the same 
in the parents and offspring. 
 
Summary of the Hardy-Weinberg model 
Starting from a parental population fulfilling assumptions of the HWM, and 
going through several steps, we could show that under certain circumstances 
an imaginary (model) population will have constant allele and genotype 
frequencies from generation to generation. A summary of these steps 
(adopted from Falconer & Mackay, 1996) is shown in Table 2. 
 
Table 2 – Summary of the Hardy-Weinberg model 
Step Deduction from: to Conditions 
  Allele frequency in parents   

1a   Normal allele segregation 
  Equal fertility of parents 

  Allele frequency in all gametes   

1b 
  Equal fertilizing capacity of all 

gametes 
  Large population 

  Allele frequency in gametes 
forming zygotes 

  

2 
  Random mating 
  Equal allele frequencies in ♂ and 

♀ parents 
  Genotype frequencies in zygotes   
3   Equal viability 
4 Genotype frequencies in progeny   

Allele frequency in progeny   
 
 
Consequences of the Hardy-Weinberg model 
Summation of allele (Equation 2) and genotype (Equation 3) frequencies to 
unity has some interesting consequences. Some of these consequences are 
illustrated in Figure 2. 
 
Allele and homozygote frequency of a rare allele: As can be seen in Figure 
2, when the frequency of the less frequent allele is low, say 0.01 (or 1%) and 
lower, only a minority of the copies of the rare alleles can be seen in the 
homozygote individuals. For example, consider an allele with the frequency 
of 1%. According to Equation 3.3 frequency of the homozygotes carrying 
this allele would be: 
 

4
2 2 2 2( ) ( ) ( ) 0.01 0.01 0.0001 10f A A f A f A −= × = × = =  

 
That is only 1 out of 10000 individual will be homozygote for this allele. 
Please notice that the numbers are not playing a trick on you. This is just a 
consequences of a fraction (say, 0.01) being raised to the power of 2. 
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Frequency of carriers of the rare allele: In the same way, Figure 2 shows 
that when an allele is rare, the majority of the copies of the allele can be 
found as heterozygotes. For a rare allele with the frequency of 0.01 the 
proportion of heterozygotes can be found from Equation 3.2; i.e. 
 

1 2 2 1 2 1( ) ( ) 2[ ( ) ( )] 2[ ] 2 2 0.99 0.01 0.0198f A A f A A f A f A q p pq+ = × = × = = × × =  
If we take the ratio of heterozygotes to homozygotes for this rare allele, we 
find that the heterozygotes are about 200 times more frequent that the 
homozygotes ( 22 / 0.0198 / 0.0001 198 200pq q = = ≈ ).  
 

 
Figure 2 – Plot of genotype frequencies for a locus with two alleles in a 
population in the Hardy-Weinberg equilibrium. 
 
 
Test for conformity to the Hardy-Weinberg equilibrium 
In genetics (as in statistics) the visual inspection of the numerical results of 
a parameter/variable is not enough for making an inference. Numerical 
results must always be checked against theoretical expectations for that 
parameter/variable. For example, the numerical results obtained in the cat 
coat color example (with allele frequencies 46% and 54% and genotype 
frequencies 19.7%, 52.6% and 27.7%, see Example 1) cannot per se tell us 
if the observations are coming from a population in the HWE. To make such 
an inference we need a test, a proper statistical test. 
 
Chi-Square test, 2χ  
An appropriate statistical test to infer conformity to the HWE is the 2χ test 
(the Greek letter chi). The equation to calculate the 2χ  test-statistics is as 
follows: 
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2
2 ( )O E

E
χ −

=∑     [4] 

 
Where 2χ is the test-statistics of interest, O is the observed number of 
individuals of certain genotype, E is the expected number of individuals of 
that genotype and Σ (the Greek letter sigma) stands for summation over all 
classes of observations. Calculated value of the 2χ  test-statistics should be 
compared with the critical values obtained from a true 2χ  distribution (for 
some values see Table 3). Degree of freedom (df) for the 2χ  value is the 
number of groups (n) minus 2 (df = n – 2). 
 
Table 3 – Some critical values of 2χ distribution 
Degree of 
freedom (df) χ2-value 

 Probability (P) = 0.05 Probability (P) = 0.01 
1 3.841 6.635 
2 5.991 9.210 
3 7.815 11.345 

 
If the calculated value of the 2χ  test-statistics is larger than the critical value, 
then it may be concluded that it is unlikely that the sample under 
consideration is coming from a population fulfilling HWM assumptions 
(unfortunately, this simple test cannot determine which of the assumptions 
have been violated).  
 
On the other hand, if the calculated value of the 2χ  test-statistics is smaller 
than the critical value, then it may be concluded that we do not have enough 
reason to reject the likelihood of the sample under consideration coming 
from a population fulfilling HWM assumptions. (Please notice that we 
cannot prove that the sample is from a population fulfilling HWM 
assumptions.) 
 
 
Example 2: 2χ test for the cat coat color example 
 
Based on the number of observations presented in Example 1, the allele 
frequencies of the two alleles at the S locus are 46% and 54% for the S and 
the s alleles, respectively.  
 
Expected numbers of genotypes from these two allele frequencies can be 
calculated by multiplying the expected Hardy-Weinberg ratios by the total 
number of observations. 
 
E(SS) = (0.46)2 x 137  = 28.99 
E(Ss) = 2 x 0.46 x 0.54 x 137 = 68.06 
E(ss) = (0.54)2 x 137   = 39.95 
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Please notice that the sum of the three expected values (28.99 + 68.06 + 
39.95) is equal to 137, which is the total number of observed cats. The 2χ
value is: 
 

2 2 2
2 (27.00 28.99) (72.00 68.06) (38.00 39.95) 0.46

28.99 68.06 39.95
χ − − −

= + + =  

 
Because the calculated value of the 2χ  with a df = 1 is smaller than the 
critical values presented in Table 3, we must conclude that we do not have 
enough reason to reject the likelihood of this cat sample coming from a 
population fulfilling HWM assumptions for the S locus. 
 
Comment on Example 2 
We really don’t know if this sample is a random sample of the Swedish cat 
population. Therefore, we must be cautious about making generalized 
conclusions from this small sample. As a matter of fact, SLU students 
participating in the “Animal Breeding and Genetics” course in the Academic 
year 2004-2005 had the following observations on a total of 154 cats: 
 
SS 16 cats  No  white fur 
Ss 100 cats < 50% white fur 
ss 38 cats   > 50% white fur 
 
 
Exercise: Calculate the 2χ value for the observations made in 2004-2005 
and interpret the results. Also, discuss the discrepancy between the results 
of the two academic years. 
 
 
Minor violations of the Hardy-Weinberg assumptions 
Hardy-Weinberg model is a very robust model and resilient to violation of 
some of its assumptions. 
 
Extension to more than two alleles per locus: Existence of more than two 
alleles per locus does not make any fundamental change. Hardy-Weinberg 
ratios are actually expansion of the following simple algebraic equation: 
 
 2 2 2( ) 2p q p pq q+ = + +  [5] 
 
For extension to more than two alleles two options are available. Imagine 
that in a locus there are three alleles with frequencies p, q and r. An easy 
option to handle this situation is to consider the two less frequent alleles as 
one allele and work out the ratios according to Equation 5. However, the 
more appropriate option is to extend Equation 5 to three alleles: 
 
 2 2 2 2( ) 2 2 2p q r p q r pq pr qr+ + = + + + + +  [6] 
 
You can see that extension to four, five or more alleles per locus is as easy 
as extension to three alleles (in equations similar to Equation 5). One 
important point to remember is that when more alleles are involved, 
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especially if some of them are very rare, randomness of sampling and size 
of the sample become more crucial. 
 
 
Different allele frequencies in males and females: Imagine an experiment in 
which males from one population and females from another population are 
put together for mating. Then, the assumption of equal allele frequencies in 
the two sexes may not be fulfilled.  
 
Table 4 – Allele frequencies in the uniting gametes and the resulting 
genotypes in the zygotes when the male and female allele frequencies are 
different (i.e. assumptions of the hardy-Weinberg model are not fulfilled). 
 Female gametes and allele frequencies 

M
al

e 
ga

m
et

es
 

an
d 

al
le

le
 fr

eq
ue

nc
ie

s 

 A1 
pf=0.60 

A2 
qf=0.40 

A1 
pm=0.30 
 

A1A1 
pmpf = 0.18 

A1A2 
pmqf = 0.12 

A2 
qm=0.70 
 

A1A2 
qmpf = 0.42 

A2A2 
qmqf = 0.28 

 
From the two allele frequencies for the A1 (A2) allele we can conclude that 
the average A1 (A2) allele in the mixed population is:  
 
 ½ ½m fp p p= +  [7.1] 
 
 ½ ½m fq q q= +  [7.2] 
 
In the example given in Table 4, the average allele frequencies are: 
 

½ ½m fp p p= + = ½ 0.30 + ½ 0.60 = 0.45, and 
½ ½m fq q q= + = ½ 0.70 + ½ 0.40 = 0.55 

 
If the mixed population was fulfilling the HWM requirements, then from the 
average allele frequency for allele A1 we may expect the genotype frequency 
for the A1A1 genotype in the zygotes (and consequently in the offspring) to 
be 0.2025, while the actual frequency of the A1A1 genotype is 0.18. 
 
We can calculate the actual allele frequencies from the genotype frequencies 
(and confirm that the actual allele frequencies are equal to the average of 
allele frequencies among the two parental sexes) as follows: 
 
p = 0.18 + ½ 0.12 + ½ 0.42 = 0.45, and 
q = 0.28 + ½ 0.12 + ½ 0.42 = 0.55 
 
A close look at the genotype frequencies shows that if the assumption of 
random mating is fulfilled, there must be equal number of male and female 
gametes (offspring) among all individuals carrying the A1A1 genotype. The 
same is true for the other genotypes. Therefore, even though the two parental 



 

 12 

sexes had different allele frequencies, the males and females in the offspring 
generation have the same allele frequencies. The conclusion is that a (mixed) 
population violating the assumption of equal allele frequencies in males and 
females will achieve equal allele frequencies after one generation of random 
mating and will remain in the HWE thereafter. 
 
Extension to sex-linked loci: One of the assumptions of the HWM was that 
the locus under consideration is not sex-linked. The reason is that the 
homogametic sex (e.g. the female in most mammalian species) carries two 
alleles and the heterogametic sex only one. Therefore, counting of alleles in 
the population will show that two-third of all alleles are found in the 
homogametic sex and one-third in the heterogametic sex, or more formally 
(assuming the female to be the heterogametic sex): 
 
 1 2

3 3m fp p p= +  [8.1] 

 
 1 2

3 3m fq q q= +  [8.2] 

 
If the allele frequencies are the same in males and females the population 
can already be in the HWE or reaches the HWE already after one round of 
random mating. However, if the allele frequencies are different in the two 
sexes, then a very interesting pattern emerges. The reason is that in the 
offspring generation all males receive their only allele from their dam, and 
females receive their two alleles from both their sires and dams. Therefore, 
allele frequency among the male and female progeny ( mp′ and fp′ , 
respectively) is  
 
 m fp p′ =  [9.1] 
 
 ½( )f m fp p p′ = +  [9.2] 
 
To see the interesting pattern we should look at the difference between allele 
frequencies in females and males, i.e.  
 
 ½( ) ½( )f m m f f f mp p p p p p p′ ′− = + − =− −  [9.3] 
  
In other words, the difference in allele frequencies in the offspring 
generation is half of the difference in the parental generation, but in the 
opposite direction! Let’s illustrate Equation 9.3 in a graph. Figure 3 
illustrates an extreme case in which allele frequency for an allele (say, A1) 
in the females is pf = 1.0 and in the males is pm = 0.0. In each generation the 
allele frequency in the males is equal to that of the females in the previous 
generation (Equation 9.1), and the allele frequency in the females is the 
average of allele frequencies in the males and females of the previous 
generation (Equation 9.3). Allele frequencies in the males and females 
fluctuate around the average of two sexes and become reduced by half in 
each generation, until the two sexes achieve equal allele frequency. When 
equal allele frequency in the two sexes is achieved, the population as a whole 
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fulfills the HWM requirements and continues to remain in the HWE 
thereafter. 
 

 
 
Figure 3 – Gradual achievement of equal allele frequency in a population 
with extreme allele frequency difference in males and females. 
 
 
Extension to more than one locus: We have seen that the HWE is achieved 
after one generation of random mating for any autosomal locus. However, 
for two (or more) autosomal loci considered together the HWE cannot be 
achieved just after one generation. The reason is that there are, almost 
always, allele combinations, i.e. genotypes, that cannot be produced after 
just one generation of random mating. As an example think about two 
autosomal loci: locus A (with two alleles A1 and A2) and locus B (with two 
alleles B1 and B2). Further, assume that we have two populations, each one 
homozygous for one of the alleles in each locus. Therefore, one population 
is entirely made of individuals with A1A1B1B1 genotype and the other 
population is entirely made of individuals with A2A2B2B2 genotype. It can 
easily be seen that in the first round of mating between these two populations 
there are only two types of gametes available: A1B1 and A2B2. The other two 
possible types of gametes (A1B2 and A2B1) cannot be produced until the next 
generation. Let’s illustrate this in a Table. 
 
Table 5 – Joint consideration of two loci and possible gametes/genotypes 
Parental 
generation 
genotypes 

 
A1A1B1B1 

  
A2A2B2B2 

Parental 
generation 
gametes 

 
A1B1 

  
A2B2 

Offspring 
generation 
genotypes 
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A2A2B2B2 
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generation 
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 A1B1,A1B2, 
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The genotype produced from A1B1/A2B2 gametes is sometimes called 
coupling heterozygotes (or non-recombinant genotype). Conversely, the 
genotype produced from A1B2/A2B1 gametes is sometimes called repulsion 
heterozygotes (or recombinant genotype). 
 
One consequence of the absence of certain genotypes in the parental gametes 
is that achieving equilibrium would depend on the time (in generations) 
needed for formation of all possible genotypes in gametes. This 
phenomenon, lack of certain gamete types and the delay in achieving the 
Hardy-Weinberg equilibrium is called gametic phase disequilibrium, or 
more commonly known as linkage disequilibrium. Please notice that the 
term “linkage disequilibrium” has very little to do with the actual physical 
linkage of adjacent loci. However, with the help of actual physical linkage 
it is easier to see how the linkage disequilibrium works. The following 
illustration depicts the same two populations discussed above. 
 
 
 Population 1    Population 2 
 
 
 
 
Figure 4 – Schematic representation of two bi-allelic loci on one 
chromosome in two populations 
 
 
If the two loci A and B are residing on the same chromosome, but very far 
from each other, then the probability of a crossover, and consequently, 
recombination, between them can be very high. However, if these two loci 
are very close to each other, then it may take many generations for a 
crossover to occur between them. Measuring the amount of disequilibrium 
requires calculation of expected and observed genotype frequencies. 
 
Table 6 – Gametic (phase) linkage disequilibrium 
Alleles A1 A2 B1 B2 
Allele frequencies pA qA pB qB 
Gametic types A1B1 A1B2 A2B1 A2B2 
Expected frequencies pApB pAqB qApB qAqB 
Observed frequencies r s t u 
Disequilibrium +D -D +D -D 

 
 
If the population is in equilibrium, then the difference between the expected 
and observed frequencies should be zero. For example, if pA = 0.3, qA = 0.7, 
pB = 0.4 and qA = 0.6, then the expected frequencies are as follows: 
 
 
 
 
Alleles A1 A2 B1 B2 
Allele frequencies 0.3 0.7 0.4 0.6 

A1  B1 

A1  B1 

A2  B2 

A2  B2 
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Gametic types A1B1 A1B2 A2B1 A2B2 
Expected frequencies 0.12 0.18 0.28 0.42 
Observed frequencies 0.12 0.18 0.28 0.42 
Disequilibrium 0.00 0.00 0.00 0.00 

 
However, if the population is not in equilibrium, then the observed 
frequencies (r, s, t and u) would be different from the expected. For example: 
 
Alleles A1 A2 B1 B2 
Allele frequencies 0.3 0.7 0.4 0.6 
Gametic types A1B1 A1B2 A2B1 A2B2 
Expected frequencies 0.12 0.18 0.28 0.42 
Observed frequencies 0.18 0.12 0.22 0.48 
Disequilibrium +0.06 -0.06 -0.06 +0.06 

 
The amount of disequilibrium is defined as the difference between the 
coupling heterozygotes produced by the original gametic types (A1B1 and 
A2B2) and the repulsion heterozygotes produced by the newly formed 
gametic types (A1B2 and A2B1). The frequencies of the coupling and 
repulsion heterozygotes are equal 2ru and 2st, respectively. The 
disequilibrium is defined as half the difference between these two, i.e. 
   
 D ru st= −  [10] 
 
The amount of disequilibrium measured by D is very much dependent on 
the allele frequencies in the population. Therefore, comparison of 
disequilibrium across populations with D is not possible. To make across 
population comparisons we can standardize the D and obtain a new measure 
of disequilibrium (r2), as follows:  
 

 
2

2

A A B B

Dr
p q p q

=
× × ×

 [11] 

 
For the example above, D = (0.18)*(0.48) – (0.12)*(0.22) = 0.06 and r2 = 
(0.06)*(0.06) / ((0.30)*(0.70)*(0.40)*(0.60)) = 0.071. 
 
There are evolutionary processes (e.g. selection, assortative mating, and 
sampling process in small populations) that lead to linkage disequilibrium 
and the loci involved are inherited in such a way “as if they were physically 
linked together”. As a matter of fact, two loci in linkage disequilibrium can 
be located on two different chromosomes and yet be consistently inherited 
together “as if they were physically linked together”, because some 
evolutionary process is holding them together! 
 
Generally, random mating, i.e. the absence of evolutionary processes, 
reduces linkage disequilibrium gradually. The reduction in linkage 
disequilibrium depends on the initial disequilibrium (D0) and recombination 
frequency (c), as 
 
 0 (1 )t

tD D c= −  [12] 
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where Dt is the amount of disequilibrium at generation t, and c is the 
recombination frequency. For unlinked loci c = ½ (because of independent 
assortment of loci). Therefore, in absence of physical linkage, the 
disequilibrium reduces by half after each generation of random mating until 
it disappears.  
 
 
Example 3: Decline of linkage disequilibrium 
 
In the following graph, the decline of linkage disequilibrium for five 
different values of recombination frequency has been shown. From left to 
right the value of c = 0.5 (no linkage), 0.4, 0.3, 0.2 and 0.1, respectively. 
 

 
 
Figure 5 – Gradual decline of linkage disequilibrium. 
 
 
 
Major violations of the Hardy-Weinberg assumptions 
A close look at the assumptions of the Hardy-Weinberg model reveals that 
these assumptions are two sorts, processes and patterns.  
 
Table 7 – Decomposing the Hardy-Weinberg assumptions into population 
genetics processes and patterns. 
Processes Patterns 
Large population; 
Random mating; 
No mutation; 
No migration; 
No selection. 
 

Large population; 
Diploid organism; 
Two alleles per locus; 
Non-sex-linked loci;  
Equal allele frequencies in ♂ and ♀; 
Unequivocal distinction of genotypes; 
Equality of reciprocal matings;  
Normal segregation; 
Sexual reproduction; 
Equal number of ♂ and ♀; 
Non-overlapping generations. 

 
Let’s avoid being carried away. The things listed here as patterns may act 
and be called as processes in other branches of genetics. However, for our 
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purposes a pattern is defined as the allele and genotype frequency at a single 
stage of life of an organism in a single population, in a single generation, 
and a process is defined as anything causing a change in allele and genotype 
frequencies.  
 
In any case, violation of certain assumptions of the HWM (that is the 
existence of evolutionary processes) leads to changes in allele and genotype 
frequencies from one stage of life to another. Therefore, populations 
subjected to these evolutionary processes will have different patterns of 
allele and genotype frequencies in space and time. And this is a major 
difference between patterns and processes: violation of pattern-assumptions 
cannot lead to changes in allele and genotype frequencies, while violation of 
process-assumptions does certainly lead to changes in allele and genotype 
frequencies. 
 
From a population genetics point of view (according to most textbooks) 
there are four evolutionary processes, also called evolutionary forces: 
genetic drift, mutation, migration and selection. In my opinion putting 
sampling process (a consequence of small population size) and random 
mating in one category (genetic drift) does not give a fair picture of these 
two processes. Therefore, I choose to consider sampling process and random 
mating as two different processes (even though they have related and 
sometimes identical effects). 
 
In the following sections major violations of the Hardy-Weinberg 
assumptions, one at the time, are described. In describing each of the major 
violations, we assume that all the other assumptions hold. Describing 
combinations of two or more violations is beyond the scope of this 
compendium and will not be covered.  
 
MUTATION 
Up to now we have assumed that DNA replication from parental germinal 
cells to the gametes proceeds without any “mistake”. However, we know 
that each individual’s DNA goes through a large number of replications and 
especially for production of gametes there are potentially a very large 
number of replications involved. Therefore, it seems inevitable that the DNA 
replication is accompanied with some mistakes.  
 
 
DEFINITION 
For our purposes, we can define mutation as any mistake in DNA 
replication. 
 
 
Assume a population homozygous for an allele (say, A1). Further, assume 
that a mutation can change the A1 allele to A2. It is obvious that if the 
mutation to A2 is a unique event, then it would not have any measurable 
effect in the population. However, if mutation to A2 is a recurrent event with 
a probability of μ (the Greek letter mu), then no matter how small the value 
of μ is, all individuals will eventually become homozygous for A2. The 
change in allele frequency (Δp, that is the difference between A1 allele 
frequency in the present, pt, and the previous generation, pt-1) is as follows: 
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 1 1 1 1 1( )t t t t t tp p p p p p pµ µ− − − − −∆ = − = − − =−  [13] 
 
The actual mutation rate per locus per generation is usually very small, about 
10-5 to 10-6, meaning that out of 100,000 to 1,000,000 individual, on average 
one individual carries a mutation for the locus under consideration. Please 
notice that i) each species (especially humans and farm species) has a large 
number of loci and ii) for quantitative traits the actual mutation rates per trait 
may be 103 to 104 times larger than the mutation rates per locus. 
 
If the mutation event from A1 to A2 continues at the same rate during a long 
time, the accumulated effect of mutation on allele frequency can be 
calculated from the following approximate equation: 
 
 0

t
tp p e µ−=  [14] 

 
In Figure 6, using Equation 14 the accumulated effect of a recurrent mutation 
has been shown in a population for different mutation rates (from 10-2 to 10-

6). With μ=10-2 it takes only 100 generation for the new allele (A2) to become 
fixed in the population, while with μ=10-5 passing of 1,000,000 generations 
is necessary for A2 to become fixed. 
 

 
 
Figure 6 – Cumulative effect of mutation on the frequency of the A1 allele. 
The X-axis shows the number of generations on a logarithmic scale (e.g. 2 
stands for the allele frequency after 102=100 generations). Mutation rates are 
from 10-1 to 10-6, for the six graphs from left to right, respectively. 
 
A special and interesting case is when there is a mutation that changes A2 
back to A1. Let the mutation rate from A2 to A1 be denoted by ν (the Greek 
letter nu). It can be seen that after some (or many many) generations an 
equilibrium will arise under which there is a seemingly constancy of allele 
frequencies (but don’t be fooled by it!). At equilibrium change of allele 
frequency for A1 (that is p) at the mutation rate μ will be equal to the change 
of allele frequency for A2 (that is q) at the mutation rate ν. Or formally 
 
 p qµ ν=  [15] 
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Equation 15 can be re-arranged to calculate the frequency of any of the 
alleles involved. For example, the frequency of A2 at the equilibrium would 
be 
 

 q µ
µ ν

=
+

 [16] 

 
Example 4 – Bi-directional mutation balance 
 
Consider a forward mutation rate (μ) of 10-6 and a backward mutation rate 
(ν) of 10-7. At equilibrium the frequency of the A2 allele (q) would be equal 
to (10-6) / (10-6 + 10-7) ≈ 0.91.   
 
Comment on Example 4 
The initial frequency of allele A1 is not important at all. Even if the 
population at the start of this process in homozygote for A1, the end result 
still will be the same, i.e. q = 0.91 for the above mentioned mutation rates. 
 
Exercise: Try some different values for μ and ν to see what would be the 
equilibrium value for the A2 allele. 
 
 
MIGRATION 
Up to now we have assumed that the populations under consideration are 
closed populations in the sense that no individual ever leaves the population 
nor any individual from other populations enters to it. However, it is 
conceivable that many individual emigrate from a population or immigrate 
to it. Effects of emigration are very similar to the effects of selection and 
therefore, they will be not discussed here.  
 
 
DEFINITION 
Migration, or specifically immigration, is the process of individuals from a 
population with different genetic constitution (that is different allele and 
genotype frequency) entering the population under consideration.  
 
 
Assume a group of individuals from a donor population with allele 
frequencies pm and qm (for A1 and A2, respectively) immigrate to a recipient 
(host) population with initial allele frequencies p0 and q0 (for A1 and A2 
alleles, respectively). In the absence of other evolutionary processes, it is 
easy to conclude that after immigration, the host population is composed of 
a proportion of individual from the donor population, m, and the rest (1-m) 
from the original host population. Therefore, the new allele frequency for A1 
in the host population is: 
 
 1 0 0 0(1 ) ( )m mp mp m p m p p p= + − = − +  [17] 
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Consequently, the difference between the new and the old A1 allele 
frequency in the host population is: 
 
 1 0 0( )p mp p m p p∆ = − = −  [18] 
 
When the migration process continues over generations, the cumulative 
effect of migration (M) can be obtained from  
 

 
0

total

m

pM
p p
∆

=
−

 [19] 

 
where M stands for the total migration. 
 
Example 5 – effect of repeated generations of migration 
 
Consider a recipient population with q0 = 1.0 (the recipient population is 
homozygote for the A2 allele), and a donor population with qm = 0.0 (the 
donor population is homozygote for the A1 allele). If at each generation, the 
number of individuals from the donor population immigrating to the 
recipient population is 1% (m = 0.01), then after about 600 generations 
almost all individuals in the donor population will be homozygote for the A1 
allele (See Figure 7). 
 

 
 
Figure 7 – Cumulative effect of 1% migration from an A1A1 population to 
an A2A2 population (pt and qt are the frequency of the A1 and A2 alleles, 
respectively, in the recipient population at generation t)  
 
Comment on Example 5 
First, please notice that the actual value of pt at Generation 1000 is not 
exactly 1.0, but rounded to two decimal places. Second, a migration rate of 
1% per generation is indeed a very high value in comparison with a mutation 
rate of 10-6. To appreciate the strength of 1% migration per generation, 
compare the x-axis of Figures 6 and 7. 
 
Exercise: Try some different values for m, p0 and pm to see what would be 
the accumulated effect of migration after a large number of generations of 
continuous migration. 
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GENERAL COMMENT ON NOTATIONS 
There is nothing sacrosanct about the symbols used here is this compendium 
or any textbook. The same is true for equations. Any equation is just 
algebraic shorthand for describing the effects of a process, and symbols or 
notations are just equivalent to words. As such, any concept can be 
expressed in many different ways. Of course, some may be considered more 
beautiful than the others, but that is just a matter of taste. As an example, 
consider Equation 17. I can choose to define the frequency of the A1 allele 
in the donor population as P instead of pm, define the frequency of the A1 
allele in the host population as pt instead of p0, and finally define the new 
allele frequency as pt+1. As the result Equation 17 changes to:  
 
 1 (1 ) ( )t t t tp m p mP p m P p+ = − + = + −  [17] 
 
I can also choose to study the changes in the allele frequency for A2 instead 
of A1, and then Equation 17 changes to:   
 
 1 0 0 0(1 ) ( )m mq mq m q m q q q= + − = − +  [17] 
 
As you see, the choice of letters, symbols, notations, alleles, and so on are 
just eccentric trivialities and entail no importance of their own. They are just 
tools.  
 
 
SELECTION 
Up to now we have assumed that all alleles and genotypes of the parental 
generation contribute equally likely to the gamete pool of the offspring 
generation, and allele and genotype frequencies in the offspring generation 
are only dependent on the allele and genotype frequencies in the parental 
generation. However, it is very important to realize that some alleles or allele 
combinations (genotypes) may actually be associated with some advantages 
or disadvantages to the individual. In other words, there might be some 
differences between individuals in their ability to produce fertile and viable 
gametes or survive at different stages of life that depends on the alleles that 
they carry. 
 
 
DEFINITIION 
Selection is the process of differential contribution of individuals of the 
parental generation to the gamete pool of the offspring generation. In 
population genetics, and for all practical purposes, “selection” is 
synonymous to “natural selection” acting on individuals with different 
abilities with regard to fertility and viability.  
 
The contribution of each individual can be measured by a mathematical 
concept called “fitness”, which is the multiplication of individual’s fertility 
and viability values.   
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Consider a locus with two alleles A1 and A2 (Table 8). Let the individuals 
carrying the three genotypes A1A1, A1A2 and A2A2 have fitness values 1-s1, 
1 and 1-s2, where s1 and s2 are the selection coefficients acting against A1A1 
and A2A2, respectively. Please notice that the choice of value of 1 for the 
heterozygotes is arbitrary. What is important is that, we would like to study 
relative fitness values and we have to choose one of the genotypes as our 
reference point. We could have chosen the fitness of A1A1 or A2A2 as the 
reference point. Please also notice that, the values assigned to s1 and s2 can 
be positive or negative. (Choice of A1A2 as the reference point creates some 
complexity and probably some confusion. However, it gives a desirable 
generality.) 
 
If both s1 and s2 are positive (that is the selection acts against homozygotes), 
then the heterozygotes are at advantage. If s1 is positive and s2 negative, then 
A2A2 is at advantage, A1A1 at disadvantage and individuals carrying A1A2 
have intermediate fitness values.  
 
Selection acting on the three genotypes leads to changes in the relative 
contribution of them and consequently leads to changes in allele and 
genotype frequencies (see Table 8). 
 
 
Table 8 – Effect of selection on allele and genotype frequencies 
 Genotypes  
 A1A1 A1A2 A2A2 Total 
Initial frequency p2 2pq q2 1 
Selection coefficient s1 0 s2  
Fitness (1-s1)  1 (1-s2)  
Contribution (1-s1) p2  2pq (1-s2) q2 1-s1p2-s2q2 

  
 
Frequency of the A2 allele after considering the effect of selection is: 
 

 
2

2
1 2 2

1 21
q s qq
s p s q
−

=
− −

 [20] 

   
The change in frequency of A2 can be calculated from: 
 

 1 2
1 0 2 2

1 2

( )
1q
pq s p s qq q

s p s q
−

∆ = − =
− −

 [21] 

 
Equation 18 is a general equation and can be simplified for different 
situation. For example, assume that A1 is completely dominant over A2, i.e. 
fitness of A1A1 is equal to the fitness of A1A2. In such a case the value of s1 
is equal to zero. Substituting s1=0 in Equation 20 gives: 
 
  

 
2

2
1 2

21
q s qq

s q
−

=
−

 [22] 
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Exercise: Try to derive equations for selection against the dominant allele. 
 
Long term effect of selection: Prediction of long-term effect of selection on 
a single locus with two alleles is very simple. One just needs to use Equation 
18 repeatedly. However, the emerging patterns are very diverse and depend 
on the values of s1, s2, p0 and q0. Figure 7 illustrates the effect of 25 
generations of selection with the values s1= -0.25, s2 =0.25, p0 =0.05 and q0 
=0.95. Please notice that, the difference in the fitness values of the two 
homozygous genotypes is equal to 50% of the fitness value for the 
heterozygous genotype. 
 

 
Figure 8 – Strong selection against A2 allele (for more details see the text). 
 
 

 
Figure 9 – Weak selection against A2 allele (for more details see the text). 
 
 
Changing the fitness values to s1= -0.01, s2 =0.01 (Figure 9) leads to a pattern 
that is completely different. With the fitness values, as is depicted in Figure 
8 (s1= -0.25, s2 =0.25), it seems that 25 generation is enough to change the 
frequency of A1 allele to a value very close to 1.0. On the other hand, with 
the difference in fitness values as small as 2% (Figure 9), it seems that 25 
generations is a very short time to observe any large change. 
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One special case of predicting the time (generations) needed to achieve a 
certain amount of change is when the selection is against a rare recessive 
allele. Number of generations required can be calculated as: 
 

 
0

1 1

t

t
q q

= −  [23] 

 
 
HARDY-WEINBERG MODEL: PART 2 
In the first part of describing the Hardy-Weinberg model the emphasis was 
on how a large random mating population with no mutation, migration and 
selection reaches to (or stays at) an equilibrium state in which allele and 
genotype frequencies are constant from parental generation to offspring 
generation. In other words, the emphasis was on a single cycle of 
reproduction, as if there are always only two generations to consider. The 
model was very robust and minor violations of its minor pattern-assumptions 
posed no serious threats to it. We also considered some major violations of 
the model assumptions (one at a time) and could conclude that violating any 
major process-assumptions will destroy the equilibrium.  
 
One thing that we did not do was to examine the assumptions to see if they 
were realistic. Here, in Part 2 of describing the HWM, without going into 
any detail, it is important to realize that none of the assumptions of the HWM 
is far from reality as the assumption of large population size (and its 
consequences such as the absence of sampling effect and random-mating). 
The reason is that a population can be kept close (to avoid migration), or in 
a very desirable and uniform environment (to minimize natural selection), 
and so on. However, constructing and maintaining a large population and 
preventing the sampling process is next to impossible. 
 
The emphasis in this part is to study the effects of changing the population 
size from large to small and examine the consequences of repeated cycles of 
reproduction when the population size is small. 
 
Consider the population designated as the “base population” in Figure 10. 
The base population not only fulfills all assumptions of the Hardy-Weinberg 
model, but has one extra (explicit) feature, namely all individuals in the base 
population are unrelated. Further, although it is not strictly necessary, 
assume that all alleles in the base population are unique. The uniqueness of 
alleles means that every individual has two alleles that are not only different 
from each other, but are different from all other alleles in the population. 
Some of these alleles may have similar effects on the trait under 
consideration, i.e. they are identical by function. However, it is their origin 
which is unrelated to the origin of all the other alleles.  
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Figure 10 – Division of a population fulfilling the assumptions of the Hardy-
Weinberg model into a number of small sub-populations, and thereby 
violating the assumption of large population size. 
 
 
Now, imagine that we sample, just randomly, a small number of individuals, 
say N, to form a small sub-population. The process of sampling can be 
repeated many times until we have a large number of sub-populations. Let 
all sub-populations have the same size and follow the assumptions of the 
HWM, except for the assumption of large population size.  
 
Each of the sub-populations, or lines (or idealized populations), formed in 
the manner described above, has only N members and carries only 2N 
alleles. At each round of reproduction, out of the large number of gametes 
that the N individuals generate, only 2N gametes are sampled to form the 
individuals of the next generation. And the small and constant population 
size continues generation after generation. The small population size entails 
two processes at two levels: the level of locus (sampling process) and the 
level of individuals (mating process).  
 
These two processes, combined with each other, create several patterns: 
random drift, divergence among sub-populations, increased homozygosity 
within each sub-population, etc. 
 
 
SAMPLING 
At the locus level, there is the sampling process. Each of the alleles may not 
get sampled, so that it is lost from the sub-population. Because all alleles are 
unique (and there is no mutation and migration to re-generate them or re-
introduce them), if an alleles is lost from the sub-population, it is lost for 
ever. On the other hand, each of the alleles may get sampled, so that new 
copies of it are generated and passed on to the next generation.  
 
 
DEFINITION 
Sampling is the process of random passage of alleles from parental 
generation to the offspring generation.  
 
Randomness of this process lies in the fact that different alleles are not under 
any discernible selection pressure, and are passed down to the next 
generation, or not, just by chance.  
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Because there are no selective differences between different alleles, allele 
frequencies in each of the sub-populations are subject to random 
fluctuations. Consider a base population in which the frequencies of the two 
alleles, f(A1)=p0 and f(A2)=q0, are equal to each other, that is 0.50. 
Therefore, each of sub-populations starts with an expected allele frequency 
of 0.50. In other words, the average of allele frequencies in all sub-
populations are 0p p=  and 0q q= . At the time of reproduction, allele 
frequencies among the gametes in one of the sub-populations may change to 
0.45 and 0.55 for the A1 and A2 alleles, respectively, just by chance. In a 
different sub-population the allele frequencies may change to 0.60 and 0.40 
for the A1 and A2 alleles, respectively. Because the sampling process is a 
random process, there is no way to predict if any allele frequency will go up, 
or down. What can be predicted is how large is the variance of change in 
allele frequencies among all sub-populations. The reason is that the process 
of picking up two alleles at random is a binomial process, very similar to 
picking up two colored balls from a bag containing red and blue balls (or 
tossing a coin, if you like).  
 
Using the properties of the binomial distribution we can say that the 
sampling consists of picking up an allele at a time. Probability of picking up 
A1 is, on average, p0 and probability of picking up A2 is, on average, q0 and 
we are going to do the sampling 2N times. Therefore, the variance of change 
in an allele frequency (say ∆q) is:  
 

 2 0 0

2q

p q
N

σ∆ =  [24] 

 
Presence of N in the denominator of Equation 24 shows that the variance of 
change in allele frequency very much depends on the size of sub-
populations. The smaller the population, the larger the variance becomes. 
This means that if the sub-populations are small, the amount of change in an 
allele frequency in any single sub-population can be quite large. When the 
sampling process continues for many generations, the allele frequencies in 
any sub-population fluctuate up and down. Depending on the size of sub-
populations, sooner or later, frequency of one the alleles gets closer and 
closer to 1.0, and eventually that allele gets fixed in that sub-population. The 
emerging pattern from the sampling process is that the sub-populations 
diverge from each other (see Figure 11). 
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Figure 11 – Divergence of sub-population under sampling process is a small 
population. 
 
 
MATING PROCESS & INBREEDING 
At the individual level, there is the mating process. Each individual has the 
opportunity of mating with any other individual (this is called panmixia), 
and because there is no selection, all matings lead to production of equally 
fertile and healthy offspring. However, because population size is constant, 
not all individuals can mate or produce offspring and consequently some of 
the individuals cannot contribute to the production of offspring. Eventually, 
and inevitably, the small population size leads to the non-randomness of 
matings.  
 
It is extremely difficult to define random mating. In the most abstract way, 
random mating can be defined as a correlation of zero between mates 
(correlation with respect to phenotype, genotype or relationship). One thing 
that is even more difficult to do is classification of different sorts of non-
random mating.  
 
For our purposes, let (for the moment) define inbreeding as a form of non-
random mating and a consequence of small sub-population size. In other 
words, in a small sub-population, matings depart from random mating, in 
the sense that the mating individuals tend to become more related to each 
other. The matings happens progressively among relatives.   
 
 
DEFINITION 
Inbreeding is defined as the process of two identical copies of a single 
ancestral allele being passed down to a descendent.  
 
It is the “identity by descent” that is of central importance in the inbreeding 
process. 
 
 
Now that we have defined inbreeding, we need a way of measuring the 
inbreeding (let’s call it the inbreeding coefficient, F). Conceptually, the 
inbreeding coefficient can be measure in the following manner. At the time 
of reproduction in an idealized population (sub-population) a limited number 
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of gametes are going to be sampled (to be exact 2N gametes). Each of the N 
individuals in this generation has two unique alleles, each of which has been 
copied a large number of times (each gamete contains one copy of one of 
these two alleles). Therefore, in the sub-population we have the following 
alleles: A1 and A2 in the first individual, A3 and A4 in the second individual, 
A2N-1 and A2N in the Nth individual. The question of interest is: What is the 
probability of sampling a second gamete containing an allele (say A1) when 
the first sampled gamete already contains the same allele (that is A1)? The 
answer is: 
 

 1
2N

 [25] 

 
The reason is that, there is virtually an infinite number of gametes. The fact 
that we have already sampled one gamete containing A1 does not change the 
frequency of A1 gametes. The frequency of A1 gamete was 1 2N and it 
remains at 1 2N . After one round of reproduction (that is, in the next 
generation, let’s call it Generation 1), there are still 2N alleles left in the sub-
population. However, these 2N alleles are not unique anymore. Some of 
them are unique, and some are not. The proportion of non-unique alleles is 
1 2N and the proportion of unique alleles is, obviously, 1 (1 2 )N− . At the 
time of reproduction for the individuals of Generation 1, to produce the 
individuals of Generation 2, the sampling of gametes needs to be repeated. 
Again, the question to be asked is: What is the probability of sampling a 
second gamete containing an allele when the first sampled gamete already 
contains the same allele? The answer is that we have to calculate two 
probabilities. The first probability is for the new copies that may be produced 
in this round of reproduction, the new inbreeding, which is 1 2N . The 
second probability is for the old copies that are being passed down from the 
previous generation. Therefore, in Generation 2 the inbreeding coefficient 
(F2) is: 
 

 2 1
1 11

2 2
F F

N N
 = + − 
 

 [26] 

 
or more generally:  
 

 1
1 11

2 2t tF F
N N −

 = + − 
 

 [27] 

 
It can be concluded that the change in inbreeding coefficient (ΔF, also called 
rate of inbreeding) in an idealized population is: 
 

 1
2

F
N

∆ =  [28] 

 
Please notice that the above description was a “conceptual” way of 
measuring the inbreeding coefficient. In the above description, we assumed 
that two gametes from an individual can unite with each other, as if the 
organism was self-fertilizing hermaphrodite. That is not a realistic situation. 



 

 29 

However, the general results (Equations 26 and 27) are still valid for the 
absolute majority of species, including all farm animals. The only difference 
is that for sampling of two gametes containing two identical copies of one 
ancestral allele we have to wait for two generation. In a realistic situation, 
all alleles in Generation 0 are assumed to be unique, and multiple copies of 
them are created in Generation 1. It is in Generation 2 that the possibility of 
two uniting gametes, having identical copies of an ancestral allele, exists for 
the first time. 
 
Measuring inbreeding coefficient (F) 
In a way, the inbreeding coefficient of an individual can be measured only, 
and only, when unequivocal knowledge of identity by descent for all loci is 
available, and this is almost always impossible.  
 
However, there are many different methods to calculate the average 
inbreeding coefficients for all loci of an individual or the average inbreeding 
coefficient for all individuals of a population with respect to a locus. These 
methods can be, roughly, divided in two groups: Exact methods (which are 
based on the information about the pedigree), and approximate methods 
(which are based on the information about the population structure). 
 
Measuring F based on pedigree information by path method 
For calculating the inbreeding coefficient of an individual based on the 
pedigree information we need to go back in the pedigree of that individual, 
through one of its parents, until we reach a common ancestor, and then to 
the other parent. Using the following equation the inbreeding coefficient is 
calculated: 
 

 1
2

n

XF  =  
 

∑  [29] 

 
where n is the number of individual starting from one parent, through the 
common ancestor, to the other parent, and Σ is for summation over all 
common ancestors. Consider the following simple pedigree: 
 

 
Figure 12 – A simple pedigree for an individual with one common ancestor 
 
In the pedigree in Figure 12 the animal of interest is X, whose parents B and 
C have only one common ancestor, A. There are three individuals to count 
B, C and A. Therefore, FX = (1/2)3 = 1/8 = 0.125.  
 
In the pedigree in Figure 13, the parents of the animal of interest, E, have 
two common ancestors, A and B, both of which should be taken into account. 
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There are two loops and three individuals in each loop. One loop consists of 
C, A and D, while the other loop consists of C, B and D. Therefore, FE = 
(1/2)3 + (1/2)3 = 1/4 = 0.25.  
 

 
 

Figure 13 – A simple pedigree for an individual with two common ancestor 
 
Equation 29 can be used for those individuals whose common ancestor is 
not inbred. If the common ancestor is itself an inbred individual, the 
inbreeding coefficient of the ancestor should be taken into account also. 
Consider the following pedigree: 
 

 
 

Figure 14 – A pedigree for an individual whose common ancestor is an 
inbred individual 
 
Equation to be used for such pedigrees is: 
 

 1 (1 )
2

n

X GF F = + 
 

∑  [30] 

 
For individual X the inbreeding coefficient should be calculated as follows: 
 
Fx = (1/2)3 [1 + (1/2)5] = (1/2)3 + (1/2)3+5 = (1/8) + (1/256) = (33/256)     



 

 31 

 
 
Relationship 
Calculation of inbreeding coefficient in an individual reveals also the 
“coefficient of relationship” between the parents of the individual. The 
coefficient of relationship, also called “additive genetic relationship”, 
“theoretical correlation” or simply “relationship”, measures the average 
proportion of [common] alleles that are identical by descent in those two 
individuals. The relationship between any two individuals, designated as “a” 
is twice the inbreeding coefficient of their offspring. For individuals H and 
I in Figure 14, the relationship is calculated as: 
  
 2HI Xa F=  [31a] 
 
Equation 30 can also be used to calculate the relationship between two 
individuals. However, instead of starting from the offspring, we start from 
one of the individuals, go through the common ancestor and to the other 
individual and count the number of paths. 
 
Equation 31a can be re-arranged to so that the inbreeding coefficient of any 
individual can be calculated from the additive genetic relationship of its 
parents, i.e. 
 
 ½X HIF a=  [31b] 
 
 
Measuring F based on pedigree information by tabular method 
Measuring F using the path method is very easy as long as the pedigree is 
simple. However, if the pedigree becomes deep (more than 2-3 generations), 
or if the pedigree becomes large (more than 20-30 individuals), or if the 
pedigree becomes complicated (more than 2-3 common ancestors), then 
measuring F by the path method will no longer be easy. The problem with 
the path method, one could say, is that it is not easy to program it, to 
computerize it.  
 
An alternative method of measuring F is by using the so-called tabular 
method. Description of tabular method is, a bit, cumbersome. So, please give 
it a chance. As an example, consider the simple pedigree depicted in Figure 
13. Let’s make a list of all individuals and their parents. Further, order the 
individual from old to young (as much as possible, so that no offspring 
appear in the list before their parents). 
 
 
 
 
 
 
 
 
Table 9 – Tabular representation of the pedigree in Figure 13. 

Individual Sire Dam 
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A - - 
B - - 
C A B 
D A B 
E C D 

 
 
Before starting the calculations draw a table for all individuals. Let the first 
column be filled with the names (or ID’s or numbers) of individuals. 
Similarly, let the first row be filled with the names of individuals and their 
parents. 
 
 
Table 9.1 – The A-matrix of the pedigree in Figure 13. 

j 
i 

-,- 
A 

-,- 
B 

A,B 
C 

A,B 
D 

C,D 
E 

A      
B      
C      
D      
E      

 
 
The table shown above is actually the famous A-matrix or the “additive 
genetic relationship matrix” (sometimes also called “Wright’s numerator 
relationship matrix”).  
 
The diagonal values of the A-matrix, aii, are equal to the relationship of an 
individual with itself, which is,  
 1.0 ½ii sda a= +  [32] 
 
where asd is the coefficient of relationship between sire and dam of the 
individual. 
 
The off-diagonal values of the A-matrix, aij (where i ≠ j), are equal to the 
average relationship of individual i with the parents of individual j, which 
is, 
 
 ½( )

j jij is ida a a= +  [33] 
 
where sj and dj are sire and dam of individual j. 
 
In practice the cells of the A-matrix can be filled as in the following steps: 
 
Step 1 
Start with the individuals of the “base” population, i.e. individuals whose 
parents are unknown (in this example, individuals A and B). These 
individuals are assumed to be non-inbred and unrelated to each other. Let 
the diagonal and upper-diagonal values for these individuals to be 1.0 and 
0.0, respectively. It can be seen that these values are results of Equations 32 
and 33, respectively, for animals with unknown ancestry. 
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Table 9.2 – The A-matrix of the pedigree in Figure 13. 

j 
i 

-,- 
A 

-,- 
B 

A,B 
C 

A,B 
D 

C,D 
E 

A 1.0 0.0    
B  1.0    
C      
D      
E      

 
Step 2  
Starting from the first individual of the “base” population, use Equation 33 
to calculate the relationship of the individual in row i with the individual in 
column j. The relationship between individual A and individuals C, D and E 
are shown below: 
 
 ½( ) ½(1.0 0.0) 0.5AC AA ABa a a= + = + =  
 ½( ) ½(1.0 0.0) 0.5AD AA ABa a a= + = + =  
 ½( ) ½(0.5 0.5) 0.5AE AC ADa a a= + = + =  
 
You realize that when we go from left to right, all elements that we need for 
any cell have been already calculated. In this example, aAA and aAB that are 
needed for individuals C and D have already been calculated in Step 1. And 
aAC and aAD that are needed for individual E have just been calculated when 
we were dealing with individual C and D. Calculation of relationship 
between individual B and individual C, D and E follow the same method as 
for individual A. Therefore, the first two rows of the A-matrix can now be 
filled. 
 
Table 9.3a – The A-matrix of the pedigree in Figure 13. 

j 
i 

-,- 
A 

-,- 
B 

A,B 
C 

A,B 
D 

C,D 
E 

A 1.0 0.0 0.5 0.5 0.5 
B  1.0 0.5 0.5 0.5 
C      
D      
E      

 
 
Step 3 
Starting with the diagonal value for the first individual of “non-base” 
population, use Equation 33 and work through the row from left to right 
using Equation 33. Values for individual C are shown below: 
 

1.0 ½ 1.0 ½(0.0) 1.0CC ABa a= + = + =  
½( ) ½(0.5 0.5) 0.5CD CA CBa a a= + = + =  

½( ) ½(1.0 0.5) 0.75CE CC CDa a a= + = + =  
 
Table 9.3b – The A-matrix of the pedigree in Figure 13. 

j -,- -,- A,B A,B C,D 
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i A B C D E 
A 1.0 0.0 0.5 0.5 0.5 
B  1.0 0.5 0.5 0.5 
C   1.0 0.5 0.75 
D      
E      

 
Values for individual D are shown below: 
 
 1.0 ½ 1.0 ½(0.0) 1.0DD ABa a= + = + =  
 ½( ) ½(0.5 1.0) 0.75DE DC DDa a a= + = + =  
 
Table 9.3c – The A-matrix of the pedigree in Figure 13. 

j 
i 

-,- 
A 

-,- 
B 

A,B 
C 

A,B 
D 

C,D 
E 

A 1.0 0.0 0.5 0.5 0.5 
B  1.0 0.5 0.5 0.5 
C   1.0 0.5 0.75 
D    1.0 0.75 
E      

 
 
Now it’s time to calculate the diagonal value for the last individual, E, as 
follows: 
 
 1.0 ½ 1.0 ½(0.5) 1.25EE CDa a= + = + =  
 
Table 9.3d – The A-matrix of the pedigree in Figure 13. 

j 
i 

-,- 
A 

-,- 
B 

A,B 
C 

A,B 
D 

C,D 
E 

A 1.0 0.0 0.5 0.5 0.5 
B  1.0 0.5 0.5 0.5 
C   1.0 0.5 0.75 
D    1.0 0.75 
E     1.25 

 
Because the A-matrix is symmetric, we can just copy the upper-diagonal 
values to the lower-diagonal values and the A-matrix is complete. 
 
Table 9.3e – The A-matrix of the pedigree in Figure 13. 

j 
i 

-,- 
A 

-,- 
B 

A,B 
C 

A,B 
D 

C,D 
E 

A 1.0 0.0 0.5 0.5 0.5 
B 0.0 1.0 0.5 0.5 0.5 
C 0.5 0.5 1.0 0.5 0.75 
D 0.5 0.5 0.5 1.0 0.75 
E 0.5 0.5 0.75 0.75 1.25 
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Combining Equations 31b and 32, you can see that the diagonal value for 
any individual is: 
 
 1.0 ½ 1.0ii sd Ia a F= + = +  [34] 
 
Therefore, the inbreeding coefficient for individual E, FE = 0.25.  
 
 
As mentioned earlier, the tabular method seems, a bit, cumbersome. 
However, because all calculations are performed in small steps and any 
values needed for younger individual have been calculated earlier, it is very 
easy to write a computer program can calculate additive genetic 
relationships and inbreeding coefficients for the most complicated 
pedigrees, even if the pedigree is very large.  
 
 
Measuring F based on effective population size 
In situations where the information on the pedigree is not available, or the 
pedigree is too extensive (i.e. pedigree contains a very large number of 
individuals) we may calculate an approximation of the inbreeding 
coefficient. This is done through calculation of a parameter called “effective 
population size”. The concept of effective population size is a confusing 
concept for many people. In order to facilitate its understanding, we can use 
some analogy from ordinary (!) life. Consider two large international 
corporations (Company A and B), each with 1000 shareholders. In Company 
A, all shareholders own the same number of shares, and consequently can 
influence the decisions equally. In company B, one of the shareholders owns 
51% of the shares. Do you think that each of the shareholders in Company 
B can influence the decisions equally? In Company A, there are 1000 
decision makers. In Company B, there is effectively, only one decision 
maker. In population genetics, the gamete pool (collection of all alleles) is 
like a company. The question is: “Are all parents contributing equally to the 
gamete pool?” 
 
 
DEFINITION 
For a real population not fulfilling the assumptions of the idealized 
population, the effective population size, Ne, is defined as the size of an 
idealized population that would lead to the same rate of inbreeding (ΔF) as 
in the real population.  
 
In other words, if the rate of inbreeding, or the sampling variance, or the 
probability of identity by descent could be calculated for a real population, 
then we could back calculate the size of an idealized population with equal 
rate of inbreeding, or the sampling variance, or the probability of identity 
by descent. The size of that idealized population is the “effective population 
size” for the real population. 
 
 
If the effective population size is known for a real population, then we can 
use the following equation for calculation of rate of inbreeding (and many 
other inbreeding related parameters): 
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 1
2 e

F
N

∆ =  or 1
2eN

F
=

∆
 [35] 

 
Effective population size depends on the population structure, .i.e. number 
of individuals of each gender, mating ratios, family size and so on. The 
problem is that there is no really general equation that can provide the 
effective population size for all sorts of population structures. The closest 
you can get to a general equation is the following [horrible looking] 
equation: 
 

 

2 2 2
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,

1 1 22 ( )
16
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mm mm mf mf
e
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M M
N M F F

M F
F F M

σ σ σ

σ σ σ

 = + + +  

 + + + +  

 [36] 

 
where M and F are the number of males and females, respectively, σ2 and  σ 
are the variance and covariance of family size, respectively, and m and f 
indicate the path from parent to offspring. For example, σmm,mf stands for the 
covariance between “number of sires to sons” and “number of sires to 
daughters”. Equation 36 can be simplified for some situations 
(unfortunately, not all situations). 
 
When the number of males (Nm) and females (Nf) are different, Equation 36 
can be approximated to: 
 

 
4 m f

e
m f

N N
N

N N
≈

+
 [37] 

 
If there is a variation in family size, but the variation is equal for males and 
females, Equation 36 is approximated to: 
 

 4
2e

k

NN
V

≈
+

 [38] 

 
And if the variation in family size is different for the two sexes, then we can 
use the following equation: 
 

 8
4e

km kf

NN
V V

≈
+ +

 [39] 

 
However, when the numbers of individuals in successive generations are 
different, Equation 36 cannot be used. A close look at Equation 31 shows 
that for calculation of effective population size we need to calculate the 
harmonic mean, and this is exactly what we need to do to calculate the 
effective population size when the numbers of individuals in generations 1 
to t (N1, N2, …, Nt) are different: 
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1 2

1 1 1 1 1...
e tN t N N N

 
≈ + + + 

 
 [40] 

 
Using Equations 37 to 40, together with the general Equation 36, one can 
calculate the rate of inbreeding in a population and consequently an average 
inbreeding coefficient for all individuals. 
 
 
Interpretation of the inbreeding coefficient 
As mentioned before, the inbreeding coefficients calculated from the 
pedigree or the population structure, are average values and can be 
interpreted in two ways (or at two levels). At the level of loci, the inbreeding 
coefficient can be interpreted as the average proportion of all loci in an 
individual that contain two alleles that are identical by descent. At the 
population level, the inbreeding coefficient can be interpreted as the average 
proportion of all individuals that carry two identical copies of an ancestral 
allele in a certain locus. 
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