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Instructions for reading this compendium

This compendium has been written in the same way as
Count Lazlo de Almasy wants Rudyard Kipling to be read to him.

You’d better read it in the same way as Kip reads it.

WARNING!
This compendium is under construction
and is not, by any means, complete.
However, in combination with lectures handouts,
it gives a fair coverage of the subject.



POPULATION GENETICS

Population genetics is a branch of genetics studying changes of allele and
genotype frequencies in populations. Like any other branch of genetics,
population genetics rests firmly on the foundations laid down by the
Mendelian genetics.

In Mendelian genetics the inheritance of specific alleles in simple matings
(crosses) or limited pedigrees is studied. The focus of interest in Mendelian
genetics is the genotype of an individual. Therefore, we either follow the
process of inheritance of certain specific alleles from parents with known
genotypes to their offspring, or alternatively we trace back the origin of
certain specific alleles from offspring with known genotypes to their parents.

In population genetics the frequency of specific alleles or genotypes in
(usually) large groups of individuals is studied. The focus of interest in
population genetics is the frequency of alleles or genotypes in populations.
Therefore, we either follow the process of inheritance of certain specific
alleles from one generation to the next, or alternatively we trace back the
patterns of allele and genotype frequencies in one generation to the processes
that have been at work in the previous generations. Even though individuals
are building blocks of a group, the genotype of any specific individual is of
less interest in comparison to the dynamics of change in allele and genotype
frequency in the population.

What is important in population genetics is not what genotype any individual
has, but how and why the frequency of alleles and genotypes in one
generation or population differs from the frequency of alleles and genotypes
in another generation or population. Population genetics is all about
processes that are the causes of changes and the patterns that they create. It’s
all about processes and patterns, patterns and processes.

DEFINITION
Population genetics is the study of allele and genotype frequencies across
space (populations) and time (generations).

Population genetics is the science of patterns of allele and genotype
frequencies and the processes that change these patterns.



LET’S STAND STILL AND TAKE A PICTURE

A very good start point for the study of population genetics would be to find
a population in which frequency of alleles and genotypes are constant from
generation to generation. If such a population existed, then we could
examine it thoroughly.

Unfortunately, no real population is in steady-state equilibrium. There is
always the possibility of something changing from generation to generation.
What is even worse is that there might be a change of allele frequencies in
two opposite directions, because two evolutionary processes with opposite
effects may be at work. Then, what we may observe is the constancy of allele
frequencies, but it doesn’t mean that there hasn’t been any change. We just
cannot observe it. The effects of the two evolutionary processes have
cancelled each other out. We should be careful and not fall into a false sense
of “security”.

Therefore, the start point for the study of population genetics has to be an
imaginary population. In other words, we need a “model”.

In population genetics two different, albeit related, concepts are used as the
starting point for the study of evolutionary processes and patterns. The first
one is the Hardy-Weinberg equilibrium (HWE) also called Hardy-Weinberg
principle or Hardy-Weinberg law. The second one is the concept of idealized
population. Here, I combine these two concepts with each other and, in
anticipation of a better name, call it Hardy-Weinberg model HWM).

HARDY-WEINBERG MODEL: PART 1
Imagine a population with the following properties:

Population is large;

Organism is diploid;

Each locus has two alleles;

The locus 1s not sex-linked;

Allele frequencies in males and females are equal;
Genotypes can be distinguished clearly;
Reciprocal mating of gametes are equal (i.e. A1A2 = A2A1)
Segregation is normal;

Reproduction is sexual;

There are equal number of females and males;
Matings are at random,;

There is no mutation;

There is no migration;

There is no selection;

Generations are non-overlapping.

DEFINITION



According to the Hardy-Weinberg model (HWM) if a population fulfills the
above mentioned properties (assumptions), then allele frequencies and
genotype frequencies are constant from generation to generation and given
the information on any of them, the other one can be calculated. Such a
population is usually called a population in Hardy-Weinberg equilibrium
(HWE) or a “base population”. Occasionally, a population in HWE may
also be referred to as a population in “linkage equilibrium”.

Allele and genotype frequencies in the parental generation

Let’s put these words into symbols. Let the locus under consideration be
called the A locus, with two alleles A1 and A». Three distinct genotypes exist
in this population A1A1, A1A2 and A2A». There are a large number of females
(Nf) and a large number of males (Nm) in the population. The population size
can also be written as:

N=N,+N, [1]

Because the organism is diploid (i.e. each individual has two chromosomes),
then the total number of alleles in the population is 2N. Now, let the
frequency of the A be equal to p. Or more formally:

Numberof 4, alleles _p

v [2.1]

f(Al):

Equivalently, let the frequency of the A be equal to g. Or more formally:

Number of A, alleles g

T [2.2]

f(4)=

Again because the organism is diploid and there are only two alleles in the
population, the sum of frequencies of A; and A alleles is equal to unity
(1.0). In other words:

JA)+f(4)=p+gq=1.0 [2]

From Equations 2.1 and 2.2 we can see that:

f(A44)=f(A4)xf(4)=pxp=p [3.1]
f(A44)=f(A4)x f(4,)=p*q=pq [3.2a]
f(AA)=f(4)x f(4)=q9xp=pq [3.2b]
[(4A)= ()< f(4)=qxq=q" [3.3]

Because A1Az and A2A| are equivalent to each other we can write:



f(A4A)+ f(A4,A4)=2[f(4)x f(4)]=2[p*xq]=2pq [3.2]

Yet again, because the organism is diploid and there are only two alleles in
the population, there are only three genotypes possible, and the sum of their
frequencies adds up to unity (1.0). In other words:

F(AA)+ [(Ad)+ f(44)=p"+2pg+q° =10 [3]

Equations 2 and 3 are summary description of allele and genotype
frequencies in a population. As such, they represent patterns and per se give
us little indications about processes (it is in the comparison of observed
patterns with the expected patterns, or observed patterns in different
populations and/or generations, that we can infer processes).

Example 1: Cat coat color

SLU students participating in the “Animal Breeding and Genetics” course in
the Academic year 2005-2006 registered cat coat color on three cats each.
One of the cat coat colors is related to the so-called S locus which is
responsible for the presence of white fur in cats. Animals of Genotype SS
have no white fur. Animals of genotype Ss have less than 50% white fur.
Finally, animals of genotype ss have more than 50% white fur. There were
a total of 137 cats observed:

SS 27 cats No white fur
Ss 72 cats < 50% white fur
ss 38 cats > 50% white fur
Number of
Genotype Number of cats S allele s allele
SS 27 54 0
Ss 72 72 72
SS 38 0 76
Total 137 126 148
54+72
S)= =0.460=46.0%
I=373 °
72+76
= =0.540=54.0%
I )= 372 °

27
§8)=—2=0.197=19.7%
f(SS) T, 0
1(S5) =2 20.526=52.6%
=—=U. =242.07%

137

38
Ss)=—==0.277=27.7%
T9=157 ’
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Comments on Example 1

You realize that the cat population under consideration in Example 1 is far
from being large. We also don’t know if the other assumptions of the HWM
are fulfilled or not. We just used this example to show how allele and
genotype frequencies are calculated.

At the time of reproduction, in the gonads and during meiosis, the diploid
cells with two chromosome sets are divided into daughter cells with one
chromosome set. The resulting daughter cells will further develop until they
become gametes. Please notice that “reproduction” and “meiosis” are
processes. The final result of these processes is the break-down of the
genotype of the individual into distinct germinal cells that contain only one
set of chromosomes, and therefore, only one allele for each locus. It is now
easy to see that it is the alleles that are transferred to the offspring, and not
the genotypes. When two gametes unite with each other to form a zygote,
then a new genotype is formed in the offspring.

Figure 1 — Schematic representation of the reproductive process and break-
down of genotypes in the parental generation and formation of new
genotypes in the offspring generation.



Allele frequencies in the parental gametes

Given the fact that the organism under study is a diploid organism, it is
obvious that the gametes carry only one set of chromosomes and therefore
only one single allele for each locus. If a parent is of genotype A1A1 (A2A2),
then all of its gametes will carry A1 (A2). On the other hand, if the parent is
of genotype A1Az, then provided normal segregation and equal viability for
the two sorts of gametes, half of the gametes will carry an A allele and the
other half an A, allele.

For the whole population, if all three genotypes (A1A1, A1Az and A2Az) have
equal fertility, then allele frequencies in the parental gametes should be
equal to the allele frequencies in parental generation.

Allele frequencies in the uniting gametes

The next step in the process of reproduction is coming together of parents.
If population is large and all male and female individuals of the parental
generation have equal opportunity of mating with any member of the
opposite sex, then the process of two gametes uniting with each other is like
sampling one male and one female gamete from a vast gamete pool.

Allele frequencies in the zygotes

If the uniting male and female gametes sampled from the gamete pool are
united with each other at random (random mating of parents) and they have
equal fertilizing capacities, then allele frequencies in gametes are equal to
the allele frequencies in the uniting parental gametes.

Genotype frequencies in the zygotes

In order to deduce the genotype frequencies in the zygotes, it is enough to
multiply allele frequencies in the male and female individuals. This is shown
in Table 1.

Table 1 — Allele frequencies in the uniting gametes and the resulting
genotypes in the zygotes when the assumptions of the Hardy-Weinberg
model are fulfilled.

Female gametes and allele frequencies

= Ay As
S o p q
§ g Ay A1A; A1A>
c3 2 p’ Pq
cc U‘
e 2
o c"; Ao A1Ar ArA»
z2 q Pq q

=

Genotype frequencies in the offspring generation

If all zygotes have equal viability, i.e. all genotypes have equal viability,
then the genotype frequencies in the offspring generation will have the same
proportions as in the parental generation.



Allele frequencies in the offspring generation

If all the newborn offspring have the same viability from birth to maturity,
then allele frequencies in the offspring generation can be deduced by
Equation 3. In other words allele and genotype frequencies will be the same
in the parents and offspring.

Summary of the Hardy-Weinberg model

Starting from a parental population fulfilling assumptions of the HWM, and
going through several steps, we could show that under certain circumstances
an imaginary (model) population will have constant allele and genotype
frequencies from generation to generation. A summary of these steps
(adopted from Falconer & Mackay, 1996) is shown in Table 2.

Table 2 — Summary of the Hardy-Weinberg model

Step Deduction from: to Conditions
llele frequency in parents

la Normal allele segregation
Equal fertility of parents
Allele frequency in all gametes
Equal fertilizing capacity of all
1b gametes
Large population
Allele frequency in gametes
forming zygotes

Random mating

2 Equal allele frequencies in & and
Q parents
enotype frequencies in zygotes
3 Equal viability
4 enotype frequencies in progeny

llele frequency in progeny

Consequences of the Hardy-Weinberg model

Summation of allele (Equation 2) and genotype (Equation 3) frequencies to
unity has some interesting consequences. Some of these consequences are
illustrated in Figure 2.

Allele and homozygote frequency of a rare allele: As can be seen in Figure
2, when the frequency of the less frequent allele is low, say 0.01 (or 1%) and
lower, only a minority of the copies of the rare alleles can be seen in the
homozygote individuals. For example, consider an allele with the frequency
of 1%. According to Equation 3.3 frequency of the homozygotes carrying
this allele would be:

f(A4,4,)=f(4,)x f(4,)=0.01x0.01=0.0001 =10""

That is only 1 out of 10000 individual will be homozygote for this allele.
Please notice that the numbers are not playing a trick on you. This is just a
consequences of a fraction (say, 0.01) being raised to the power of 2.



Frequency of carriers of the rare allele: In the same way, Figure 2 shows
that when an allele is rare, the majority of the copies of the allele can be
found as heterozygotes. For a rare allele with the frequency of 0.01 the
proportion of heterozygotes can be found from Equation 3.2; i.e.

SAA)+ f(A4A4)=2[f(4,)x f(4)]=2[gxp]=2pg=2%0.99x0.01=0.0198
If we take the ratio of heterozygotes to homozygotes for this rare allele, we
find that the heterozygotes are about 200 times more frequent that the
homozygotes (2pg/q>=0.0198/0.0001=198~200).
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1 \
091\
0.8 +
2> 07+
c \
g
2 06 "
e *
.~ N
g 0.5 + RS ———
z x” X
2 o4+t AN ~
é s N\
03 4 / N
/ N \
/ N \
0.2 + / M \
/ \
01+ 7/ el \
/T \
0 ¥— — B S
NN N N S GRS ©
Frequency of A2
AIAT — — = A1A2  ------- A2A2

Figure 2 — Plot of genotype frequencies for a locus with two alleles in a
population in the Hardy-Weinberg equilibrium.

Test for conformity to the Hardy-Weinberg equilibrium

In genetics (as in statistics) the visual inspection of the numerical results of
a parameter/variable is not enough for making an inference. Numerical
results must always be checked against theoretical expectations for that
parameter/variable. For example, the numerical results obtained in the cat
coat color example (with allele frequencies 46% and 54% and genotype
frequencies 19.7%, 52.6% and 27.7%, see Example 1) cannot per se tell us
if the observations are coming from a population in the HWE. To make such
an inference we need a test, a proper statistical test.

Chi-Square test, 7’
An appropriate statistical test to infer conformity to the HWE is the y”test

(the Greek letter chi). The equation to calculate the y* test-statistics is as
follows:



p=yE 4]

Where j’is the test-statistics of interest, O is the observed number of

individuals of certain genotype, E is the expected number of individuals of
that genotype and X (the Greek letter sigma) stands for summation over all

classes of observations. Calculated value of the y” test-statistics should be
compared with the critical values obtained from a true y° distribution (for

some values see Table 3). Degree of freedom (df) for the y° value is the
number of groups (n) minus 2 (df =n —2).

Table 3 — Some critical values of j° distribution

Degree of
freedom (df) (-value
Probability (P) = 0.05 Probability (P) = 0.01
1 3.841 6.635
5.991 9.210
3 7.815 11.345

If the calculated value of the y” test-statistics is larger than the critical value,

then it may be concluded that it is unlikely that the sample under
consideration is coming from a population fulfilling HWM assumptions
(unfortunately, this simple test cannot determine which of the assumptions
have been violated).

On the other hand, if the calculated value of the y* test-statistics is smaller
than the critical value, then it may be concluded that we do not have enough
reason to reject the likelihood of the sample under consideration coming
from a population fulfilling HWM assumptions. (Please notice that we
cannot prove that the sample is from a population fulfilling HWM
assumptions.)

Example 2: 7’ test for the cat coat color example

Based on the number of observations presented in Example 1, the allele
frequencies of the two alleles at the S locus are 46% and 54% for the S and
the s alleles, respectively.

Expected numbers of genotypes from these two allele frequencies can be
calculated by multiplying the expected Hardy-Weinberg ratios by the total
number of observations.

E(SS) = (0.46)* x 137 =28.99
E(Ss) =2 x 0.46 x 0.54 x 137 = 68.06
E(ss) = (0.54) x 137 =39.95



Please notice that the sum of the three expected values (28.99 + 68.06 +
39.95) is equal to 137, which is the total number of observed cats. The y°
value is:

»_(27.00-28.99)°  (72.00-68.06)"  (38.00-39.95)" _
28.99 68.06 39.95

0.46

Because the calculated value of the y* with a df = 1 is smaller than the

critical values presented in Table 3, we must conclude that we do not have
enough reason to reject the likelihood of this cat sample coming from a
population fulfilling HWM assumptions for the S locus.

Comment on Example 2

We really don’t know if this sample is a random sample of the Swedish cat
population. Therefore, we must be cautious about making generalized
conclusions from this small sample. As a matter of fact, SLU students
participating in the “Animal Breeding and Genetics” course in the Academic
year 2004-2005 had the following observations on a total of 154 cats:

SS 16 cats No white fur
Ss 100 cats < 50% white fur
ss 38 cats > 50% white fur

Exercise: Calculate the y’value for the observations made in 2004-2005

and interpret the results. Also, discuss the discrepancy between the results
of the two academic years.

Minor violations of the Hardy-Weinberg assumptions
Hardy-Weinberg model is a very robust model and resilient to violation of
some of its assumptions.

Extension to more than two alleles per locus: Existence of more than two
alleles per locus does not make any fundamental change. Hardy-Weinberg
ratios are actually expansion of the following simple algebraic equation:

(p+q)’=p°+2pg+q’ [5]

For extension to more than two alleles two options are available. Imagine
that in a locus there are three alleles with frequencies p, q and r. An easy
option to handle this situation is to consider the two less frequent alleles as
one allele and work out the ratios according to Equation 5. However, the
more appropriate option is to extend Equation 5 to three alleles:

(p+q+r)2=p2+q2+r2+2pq+2pr+2qr [6]

You can see that extension to four, five or more alleles per locus is as easy
as extension to three alleles (in equations similar to Equation 5). One
important point to remember is that when more alleles are involved,
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especially if some of them are very rare, randomness of sampling and size
of the sample become more crucial.

Different allele frequencies in males and females: Imagine an experiment in
which males from one population and females from another population are
put together for mating. Then, the assumption of equal allele frequencies in
the two sexes may not be fulfilled.

Table 4 — Allele frequencies in the uniting gametes and the resulting
genotypes in the zygotes when the male and female allele frequencies are
different (i.e. assumptions of the hardy-Weinberg model are not fulfilled).

Female gametes and allele frequencies

= Aj Az

S g pi=0.60 q=0.40

b g Al A1A) A1A>

g 2 pm=0.30 pmpr=0.18 pmgr=0.12

<

& 2

o A Az Ai1Az ArA;

§ < qm=0.70 qumps = 0.42 qmqs = 0.28
<

From the two allele frequencies for the A (A2) allele we can conclude that
the average A1 (A») allele in the mixed population is:

q="2q,+%q, [7.2]
In the example given in Table 4, the average allele frequencies are:

P=Yap, +%p,= %030+ %0.60 =0.45, and
7 =%q, +%q,= "% 0.70 + % 0.40 = 0.55

m

If the mixed population was fulfilling the HWM requirements, then from the
average allele frequency for allele A1 we may expect the genotype frequency
for the A1A1 genotype in the zygotes (and consequently in the offspring) to
be 0.2025, while the actual frequency of the A1A; genotype is 0.18.

We can calculate the actual allele frequencies from the genotype frequencies
(and confirm that the actual allele frequencies are equal to the average of
allele frequencies among the two parental sexes) as follows:

p=0.18+%0.12+%0.42 =0.45, and
q=028+"%0.12+'0.42=0.55

A close look at the genotype frequencies shows that if the assumption of
random mating is fulfilled, there must be equal number of male and female
gametes (offspring) among all individuals carrying the A1A1 genotype. The
same is true for the other genotypes. Therefore, even though the two parental
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sexes had different allele frequencies, the males and females in the offspring
generation have the same allele frequencies. The conclusion is that a (mixed)
population violating the assumption of equal allele frequencies in males and
females will achieve equal allele frequencies after one generation of random
mating and will remain in the HWE thereafter.

Extension to sex-linked loci: One of the assumptions of the HWM was that
the locus under consideration is not sex-linked. The reason is that the
homogametic sex (e.g. the female in most mammalian species) carries two
alleles and the heterogametic sex only one. Therefore, counting of alleles in
the population will show that two-third of all alleles are found in the
homogametic sex and one-third in the heterogametic sex, or more formally
(assuming the female to be the heterogametic sex):

p=Yp.+%p, [8.1]
7=Y,9,+%q, [8.2]

If the allele frequencies are the same in males and females the population
can already be in the HWE or reaches the HWE already after one round of
random mating. However, if the allele frequencies are different in the two
sexes, then a very interesting pattern emerges. The reason is that in the
offspring generation all males receive their only allele from their dam, and
females receive their two alleles from both their sires and dams. Therefore,

allele frequency among the male and female progeny (p, andp/,

respectively) is
Pn=P [9.1]

py="(p,+p,) [9.2]

To see the interesting pattern we should look at the difference between allele
frequencies in females and males, i.e.

!

Py=pn="2(p,+p)—p;=="2(p,—D,) [9.3]

In other words, the difference in allele frequencies in the offspring
generation is half of the difference in the parental generation, but in the
opposite direction! Let’s illustrate Equation 9.3 in a graph. Figure 3
illustrates an extreme case in which allele frequency for an allele (say, A1)
in the females is pr= 1.0 and in the males is pm = 0.0. In each generation the
allele frequency in the males is equal to that of the females in the previous
generation (Equation 9.1), and the allele frequency in the females is the
average of allele frequencies in the males and females of the previous
generation (Equation 9.3). Allele frequencies in the males and females
fluctuate around the average of two sexes and become reduced by half in
each generation, until the two sexes achieve equal allele frequency. When
equal allele frequency in the two sexes is achieved, the population as a whole
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fulfills the HWM requirements and continues to remain in the HWE

thereafter.
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Figure 3 — Gradual achievement of equal allele frequency in a population
with extreme allele frequency difference in males and females.

Extension to more than one locus: We have seen that the HWE is achieved
after one generation of random mating for any autosomal locus. However,
for two (or more) autosomal loci considered together the HWE cannot be
achieved just after one generation. The reason is that there are, almost
always, allele combinations, i.e. genotypes, that cannot be produced after
just one generation of random mating. As an example think about two
autosomal loci: locus A (with two alleles A; and A») and locus B (with two
alleles B1 and B). Further, assume that we have two populations, each one
homozygous for one of the alleles in each locus. Therefore, one population
is entirely made of individuals with A1A1BiB1 genotype and the other
population is entirely made of individuals with A2A>B>B> genotype. It can
easily be seen that in the first round of mating between these two populations
there are only two types of gametes available: A1B1 and A2B.. The other two
possible types of gametes (A1B2 and A2B1) cannot be produced until the next
generation. Let’s illustrate this in a Table.

Table 5 — Joint consideration of two loci and possible gametes/genotypes

Parental
generation
genotypes
Parental
generation
gametes

A1A1B 1B AxA>BoB>

A 1B AoB>

Offspring
generation
genotypes

A1A BBy,
ArA>B>B»
A1A2B1B>

Offspring
generation
gametes

A1B1,A1B2,
AsB1, A2B»

13



The genotype produced from AiBi/A>B> gametes is sometimes called
coupling heterozygotes (or non-recombinant genotype). Conversely, the
genotype produced from Ai1B2/A>B1 gametes is sometimes called repulsion
heterozygotes (or recombinant genotype).

One consequence of the absence of certain genotypes in the parental gametes
is that achieving equilibrium would depend on the time (in generations)
needed for formation of all possible genotypes in gametes. This
phenomenon, lack of certain gamete types and the delay in achieving the
Hardy-Weinberg equilibrium is called gametic phase disequilibrium, or
more commonly known as linkage disequilibrium. Please notice that the
term “linkage disequilibrium” has very little to do with the actual physical
linkage of adjacent loci. However, with the help of actual physical linkage
it is easier to see how the linkage disequilibrium works. The following
illustration depicts the same two populations discussed above.

Population 1 Population 2
Al B Ao B
Al B Az B>

Figure 4 — Schematic representation of two bi-allelic loci on one
chromosome in two populations

If the two loci A and B are residing on the same chromosome, but very far
from each other, then the probability of a crossover, and consequently,
recombination, between them can be very high. However, if these two loci
are very close to each other, then it may take many generations for a
crossover to occur between them. Measuring the amount of disequilibrium
requires calculation of expected and observed genotype frequencies.

Table 6 — Gametic (phase) linkage disequilibrium

Alleles Ay As Bi B>
Allele frequencies pa ga pPB g
Gametic types A1Bi A1B2 AxBi A2B>
Expected frequencies PAPB pagB JApB qags
Observed frequencies r ] t u
Disequilibrium +D -D +D -D

If the population is in equilibrium, then the difference between the expected
and observed frequencies should be zero. For example, if pa =0.3, ga = 0.7,
ps = 0.4 and ga = 0.6, then the expected frequencies are as follows:

Alleles Ay Az Bi B>
Allele frequencies 0.3 0.7 0.4 0.6

14



Gametic types A1B) AiB ArBy ArB»

Expected frequencies 0.12 0.18 0.28 0.42
Observed frequencies 0.12 0.18 0.28 0.42
Disequilibrium 0.00 0.00 0.00 0.00

However, if the population is not in equilibrium, then the observed
frequencies (1, s, t and u) would be different from the expected. For example:

Alleles A Az Bi B:
Allele frequencies 0.3 0.7 0.4 0.6
Gametic types A1Bi A1B2 AoBy AoB>
Expected frequencies 0.12 0.18 0.28 0.42
Observed frequencies 0.18 0.12 0.22 0.48
Disequilibrium +0.06 -0.06 -0.06 +0.06

The amount of disequilibrium is defined as the difference between the
coupling heterozygotes produced by the original gametic types (Ai1B1 and
AzB») and the repulsion heterozygotes produced by the newly formed
gametic types (AiB2 and A:Bi). The frequencies of the coupling and
repulsion heterozygotes are equal 2ru and 2st, respectively. The
disequilibrium is defined as half the difference between these two, i.e.

D=ru-st [10]

The amount of disequilibrium measured by D is very much dependent on
the allele frequencies in the population. Therefore, comparison of
disequilibrium across populations with D is not possible. To make across
population comparisons we can standardize the D and obtain a new measure
of disequilibrium (1), as follows:

DZ
7= [11]
PiXq,%PpXqy

For the example above, D = (0.18)*(0.48) — (0.12)*(0.22) = 0.06 and r*> =
(0.06)*(0.06) / ((0.30)*(0.70)*(0.40)*(0.60)) = 0.071.

There are evolutionary processes (e.g. selection, assortative mating, and
sampling process in small populations) that lead to linkage disequilibrium
and the loci involved are inherited in such a way “as if they were physically
linked together”. As a matter of fact, two loci in linkage disequilibrium can
be located on two different chromosomes and yet be consistently inherited
together “as if they were physically linked together”, because some
evolutionary process is holding them together!

Generally, random mating, i.e. the absence of evolutionary processes,
reduces linkage disequilibrium gradually. The reduction in linkage

disequilibrium depends on the initial disequilibrium (Do) and recombination
frequency (c), as

D,=D,(1-c¢)' [12]
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where D¢ is the amount of disequilibrium at generation t, and c is the
recombination frequency. For unlinked loci ¢ = 2 (because of independent
assortment of loci). Therefore, in absence of physical linkage, the
disequilibrium reduces by half after each generation of random mating until
it disappears.

Example 3: Decline of linkage disequilibrium

In the following graph, the decline of linkage disequilibrium for five
different values of recombination frequency has been shown. From left to
right the value of ¢ = 0.5 (no linkage), 0.4, 0.3, 0.2 and 0.1, respectively.
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Figure 5 — Gradual decline of linkage disequilibrium.

Major violations of the Hardy-Weinberg assumptions
A close look at the assumptions of the Hardy-Weinberg model reveals that
these assumptions are two sorts, processes and patterns.

Table 7 — Decomposing the Hardy-Weinberg assumptions into population
genetics processes and patterns.

Processes Patterns

Large population; Large population;

Random mating; Diploid organism;

No mutation; Two alleles per locus;

No migration; Non-sex-linked loci;

No selection. Equal allele frequencies in & and ¢;

Unequivocal distinction of genotypes;
Equality of reciprocal matings;
Normal segregation;

Sexual reproduction;

Equal number of & and @;
Non-overlapping generations.

Let’s avoid being carried away. The things listed here as patterns may act
and be called as processes in other branches of genetics. However, for our
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purposes a pattern is defined as the allele and genotype frequency at a single
stage of life of an organism in a single population, in a single generation,
and a process is defined as anything causing a change in allele and genotype
frequencies.

In any case, violation of certain assumptions of the HWM (that is the
existence of evolutionary processes) leads to changes in allele and genotype
frequencies from one stage of life to another. Therefore, populations
subjected to these evolutionary processes will have different patterns of
allele and genotype frequencies in space and time. And this is a major
difference between patterns and processes: violation of pattern-assumptions
cannot lead to changes in allele and genotype frequencies, while violation of
process-assumptions does certainly lead to changes in allele and genotype
frequencies.

From a population genetics point of view (according to most textbooks)
there are four evolutionary processes, also called evolutionary forces:
genetic drift, mutation, migration and selection. In my opinion putting
sampling process (a consequence of small population size) and random
mating in one category (genetic drift) does not give a fair picture of these
two processes. Therefore, I choose to consider sampling process and random
mating as two different processes (even though they have related and
sometimes identical effects).

In the following sections major violations of the Hardy-Weinberg
assumptions, one at the time, are described. In describing each of the major
violations, we assume that all the other assumptions hold. Describing
combinations of two or more violations is beyond the scope of this
compendium and will not be covered.

MUTATION

Up to now we have assumed that DNA replication from parental germinal
cells to the gametes proceeds without any “mistake”. However, we know
that each individual’s DNA goes through a large number of replications and
especially for production of gametes there are potentially a very large
number of replications involved. Therefore, it seems inevitable that the DNA
replication is accompanied with some mistakes.

DEFINITION
For our purposes, we can define mutation as any mistake in DNA
replication.

Assume a population homozygous for an allele (say, A1). Further, assume
that a mutation can change the A; allele to A». It is obvious that if the
mutation to Az is a unique event, then it would not have any measurable
effect in the population. However, if mutation to A; is a recurrent event with
a probability of p (the Greek letter mu), then no matter how small the value
of n is, all individuals will eventually become homozygous for A,. The
change in allele frequency (A, that is the difference between A; allele
frequency in the present, p, and the previous generation, p.1) is as follows:
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Ap=p,—p,_ =P, — 1P, )= P, =— HD, [13]

The actual mutation rate per locus per generation is usually very small, about
107 to 10, meaning that out of 100,000 to 1,000,000 individual, on average
one individual carries a mutation for the locus under consideration. Please
notice that i) each species (especially humans and farm species) has a large
number of loci and i7) for quantitative traits the actual mutation rates per trait
may be 10° to 10* times larger than the mutation rates per locus.

If the mutation event from A to A, continues at the same rate during a long
time, the accumulated effect of mutation on allele frequency can be
calculated from the following approximate equation:

p=pe” [14]
In Figure 6, using Equation 14 the accumulated effect of a recurrent mutation
has been shown in a population for different mutation rates (from 102 to 10-
6). With p=102 it takes only 100 generation for the new allele (Az) to become

fixed in the population, while with u=10" passing of 1,000,000 generations
is necessary for Az to become fixed.
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Figure 6 — Cumulative effect of mutation on the frequency of the A allele.
The X-axis shows the number of generations on a logarithmic scale (e.g. 2
stands for the allele frequency after 10>=100 generations). Mutation rates are
from 107! to 1075, for the six graphs from left to right, respectively.

A special and interesting case is when there is a mutation that changes A»
back to Ai. Let the mutation rate from A; to A; be denoted by v (the Greek
letter nu). It can be seen that after some (or many many) generations an
equilibrium will arise under which there is a seemingly constancy of allele
frequencies (but don’t be fooled by it!). At equilibrium change of allele
frequency for A (that is p) at the mutation rate p will be equal to the change
of allele frequency for A (that is q) at the mutation rate v. Or formally

pu=qv [15]
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Equation 15 can be re-arranged to calculate the frequency of any of the
alleles involved. For example, the frequency of A at the equilibrium would
be

q:ﬂﬁv [16]

Example 4 — Bi-directional mutation balance

Consider a forward mutation rate (i) of 10 and a backward mutation rate
(v) of 1077, At equilibrium the frequency of the A» allele (q) would be equal
to (10) /(10°+107) = 0.91.

Comment on Example 4

The initial frequency of allele Ai is not important at all. Even if the
population at the start of this process in homozygote for Ai, the end result
still will be the same, i.e. ¢ = 0.91 for the above mentioned mutation rates.

Exercise: Try some different values for p and v to see what would be the
equilibrium value for the A» allele.

MIGRATION

Up to now we have assumed that the populations under consideration are
closed populations in the sense that no individual ever leaves the population
nor any individual from other populations enters to it. However, it is
conceivable that many individual emigrate from a population or immigrate
to it. Effects of emigration are very similar to the effects of selection and
therefore, they will be not discussed here.

DEFINITION

Migration, or specifically immigration, is the process of individuals from a
population with different genetic constitution (that is different allele and
genotype frequency) entering the population under consideration.

Assume a group of individuals from a donor population with allele
frequencies pm and gm (for A1 and A», respectively) immigrate to a recipient
(host) population with initial allele frequencies po and qo (for A1 and A>
alleles, respectively). In the absence of other evolutionary processes, it is
easy to conclude that after immigration, the host population is composed of
a proportion of individual from the donor population, m, and the rest (1-m)
from the original host population. Therefore, the new allele frequency for A
in the host population is:

py=mp, +(1—m)p,=m(p, —p,)+p, [17]
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Consequently, the difference between the new and the old A; allele
frequency in the host population is:

Apzpl_p():m(pm_po) [18]

When the migration process continues over generations, the cumulative
effect of migration (M) can be obtained from

M — Aptotal [19]
pm _pO

where M stands for the total migration.

Example S — effect of repeated generations of migration

Consider a recipient population with qo = 1.0 (the recipient population is
homozygote for the A allele), and a donor population with gm = 0.0 (the
donor population is homozygote for the A; allele). If at each generation, the
number of individuals from the donor population immigrating to the
recipient population is 1% (m = 0.01), then after about 600 generations
almost all individuals in the donor population will be homozygote for the A
allele (See Figure 7).
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Figure 7 — Cumulative effect of 1% migration from an A1A; population to
an AxA» population (p¢ and q; are the frequency of the A1 and A; alleles,
respectively, in the recipient population at generation t)

Comment on Example 5

First, please notice that the actual value of p¢ at Generation 1000 is not
exactly 1.0, but rounded to two decimal places. Second, a migration rate of
1% per generation is indeed a very high value in comparison with a mutation
rate of 10, To appreciate the strength of 1% migration per generation,
compare the x-axis of Figures 6 and 7.

Exercise: Try some different values for m, po and pm to see what would be
the accumulated effect of migration after a large number of generations of
continuous migration.
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GENERAL COMMENT ON NOTATIONS

There is nothing sacrosanct about the symbols used here is this compendium
or any textbook. The same is true for equations. Any equation is just
algebraic shorthand for describing the effects of a process, and symbols or
notations are just equivalent to words. As such, any concept can be
expressed in many different ways. Of course, some may be considered more
beautiful than the others, but that is just a matter of taste. As an example,
consider Equation 17. I can choose to define the frequency of the A allele
in the donor population as P instead of pm, define the frequency of the A
allele in the host population as p: instead of po, and finally define the new
allele frequency as p+1. As the result Equation 17 changes to:

pia=(1-m)p,+mP=p,+m(P-p,) [17]

I can also choose to study the changes in the allele frequency for A» instead
of A1, and then Equation 17 changes to:

q,=mq,, +(1-m)q,=m(q,, —q,)+4, [17]

As you see, the choice of letters, symbols, notations, alleles, and so on are
just eccentric trivialities and entail no importance of their own. They are just
tools.

SELECTION

Up to now we have assumed that all alleles and genotypes of the parental
generation contribute equally likely to the gamete pool of the offspring
generation, and allele and genotype frequencies in the offspring generation
are only dependent on the allele and genotype frequencies in the parental
generation. However, it is very important to realize that some alleles or allele
combinations (genotypes) may actually be associated with some advantages
or disadvantages to the individual. In other words, there might be some
differences between individuals in their ability to produce fertile and viable
gametes or survive at different stages of life that depends on the alleles that
they carry.

DEFINITIION

Selection is the process of differential contribution of individuals of the
parental generation to the gamete pool of the offspring generation. In
population genetics, and for all practical purposes, ‘selection” is
synonymous to ‘“‘natural selection” acting on individuals with different
abilities with regard to fertility and viability.

The contribution of each individual can be measured by a mathematical

concept called “fitness”, which is the multiplication of individual’s fertility
and viability values.
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Consider a locus with two alleles A; and A> (Table 8). Let the individuals
carrying the three genotypes A1A1, A1A2 and A2A> have fitness values 1-si,
1 and 1-s2, where s1 and sz are the selection coefficients acting against A1A
and AA», respectively. Please notice that the choice of value of 1 for the
heterozygotes is arbitrary. What is important is that, we would like to study
relative fitness values and we have to choose one of the genotypes as our
reference point. We could have chosen the fitness of A1A; or A2A» as the
reference point. Please also notice that, the values assigned to s and s; can
be positive or negative. (Choice of A1A» as the reference point creates some
complexity and probably some confusion. However, it gives a desirable
generality.)

If both s; and s are positive (that is the selection acts against homozygotes),
then the heterozygotes are at advantage. If s; is positive and s, negative, then
A2A> is at advantage, A1A1 at disadvantage and individuals carrying A1A»
have intermediate fitness values.

Selection acting on the three genotypes leads to changes in the relative

contribution of them and consequently leads to changes in allele and
genotype frequencies (see Table 8).

Table 8 — Effect of selection on allele and genotype frequencies

Genotypes
A1Aq A1Ar AxAr Total
Initial frequency p’ 2pq q 1
Selection coefficient s 0 2
Fitness (1-s1) 1 (1-s2)
Contribution (1-s1))p>  2pq (1-s2) > 1-sip*-s2q?

Frequency of the A» allele after considering the effect of selection is:

q-— S2q2 [20]

2

& _1_S1p2 —S5,4q

The change in frequency of A» can be calculated from:

(s, —5,9)
A,=q,—q, =LLHL=01) [21]
l—s,p" =59

Equation 18 is a general equation and can be simplified for different
situation. For example, assume that A; is completely dominant over Ao, i.e.
fitness of A1A1 is equal to the fitness of A1Az. In such a case the value of s
is equal to zero. Substituting s1=0 in Equation 20 gives:

2
-8
e [22]
1- S,q
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Exercise: Try to derive equations for selection against the dominant allele.

Long term effect of selection: Prediction of long-term effect of selection on
a single locus with two alleles is very simple. One just needs to use Equation
18 repeatedly. However, the emerging patterns are very diverse and depend
on the values of si, s2, po and qo. Figure 7 illustrates the effect of 25
generations of selection with the values s;=-0.25, s> =0.25, po =0.05 and qo
=0.95. Please notice that, the difference in the fitness values of the two
homozygous genotypes is equal to 50% of the fitness value for the
heterozygous genotype.
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Figure 8 — Strong selection against A» allele (for more details see the text).
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Figure 9 — Weak selection against A, allele (for more details see the text).

Changing the fitness values to s1=-0.01, s =0.01 (Figure 9) leads to a pattern
that is completely different. With the fitness values, as is depicted in Figure
8 (s1=-0.25, s2 =0.25), it seems that 25 generation is enough to change the
frequency of A; allele to a value very close to 1.0. On the other hand, with
the difference in fitness values as small as 2% (Figure 9), it seems that 25
generations is a very short time to observe any large change.
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One special case of predicting the time (generations) needed to achieve a
certain amount of change is when the selection is against a rare recessive
allele. Number of generations required can be calculated as:

gt L [23]

qt qO

HARDY-WEINBERG MODEL: PART 2

In the first part of describing the Hardy-Weinberg model the emphasis was
on how a large random mating population with no mutation, migration and
selection reaches to (or stays at) an equilibrium state in which allele and
genotype frequencies are constant from parental generation to offspring
generation. In other words, the emphasis was on a single cycle of
reproduction, as if there are always only two generations to consider. The
model was very robust and minor violations of its minor pattern-assumptions
posed no serious threats to it. We also considered some major violations of
the model assumptions (one at a time) and could conclude that violating any
major process-assumptions will destroy the equilibrium.

One thing that we did not do was to examine the assumptions to see if they
were realistic. Here, in Part 2 of describing the HWM, without going into
any detail, it is important to realize that none of the assumptions of the HWM
is far from reality as the assumption of large population size (and its
consequences such as the absence of sampling effect and random-mating).
The reason is that a population can be kept close (to avoid migration), or in
a very desirable and uniform environment (to minimize natural selection),
and so on. However, constructing and maintaining a large population and
preventing the sampling process is next to impossible.

The emphasis in this part is to study the effects of changing the population
size from large to small and examine the consequences of repeated cycles of
reproduction when the population size is small.

Consider the population designated as the “base population” in Figure 10.
The base population not only fulfills all assumptions of the Hardy-Weinberg
model, but has one extra (explicit) feature, namely all individuals in the base
population are unrelated. Further, although it is not strictly necessary,
assume that all alleles in the base population are unique. The uniqueness of
alleles means that every individual has two alleles that are not only different
from each other, but are different from all other alleles in the population.
Some of these alleles may have similar effects on the trait under
consideration, i.e. they are identical by function. However, it is their origin
which is unrelated to the origin of all the other alleles.
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Figure 10 — Division of a population fulfilling the assumptions of the Hardy-
Weinberg model into a number of small sub-populations, and thereby
violating the assumption of large population size.

Now, imagine that we sample, just randomly, a small number of individuals,
say N, to form a small sub-population. The process of sampling can be
repeated many times until we have a large number of sub-populations. Let
all sub-populations have the same size and follow the assumptions of the
HWM, except for the assumption of large population size.

Each of the sub-populations, or lines (or idealized populations), formed in
the manner described above, has only N members and carries only 2N
alleles. At each round of reproduction, out of the large number of gametes
that the N individuals generate, only 2N gametes are sampled to form the
individuals of the next generation. And the small and constant population
size continues generation after generation. The small population size entails
two processes at two levels: the level of locus (sampling process) and the
level of individuals (mating process).

These two processes, combined with each other, create several patterns:
random drift, divergence among sub-populations, increased homozygosity
within each sub-population, etc.

SAMPLING

At the locus level, there is the sampling process. Each of the alleles may not
get sampled, so that it is lost from the sub-population. Because all alleles are
unique (and there is no mutation and migration to re-generate them or re-
introduce them), if an alleles is lost from the sub-population, it is lost for
ever. On the other hand, each of the alleles may get sampled, so that new
copies of it are generated and passed on to the next generation.

DEFINITION
Sampling is the process of random passage of alleles from parental
generation to the offspring generation.

Randomness of this process lies in the fact that different alleles are not under

any discernible selection pressure, and are passed down to the next
generation, or not, just by chance.
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Because there are no selective differences between different alleles, allele
frequencies in each of the sub-populations are subject to random
fluctuations. Consider a base population in which the frequencies of the two
alleles, f(A1)=po and f(A2)=qo, are equal to each other, that is 0.50.
Therefore, each of sub-populations starts with an expected allele frequency
of 0.50. In other words, the average of allele frequencies in all sub-
populations are p=p, and g=¢q,. At the time of reproduction, allele

frequencies among the gametes in one of the sub-populations may change to
0.45 and 0.55 for the A1 and A: alleles, respectively, just by chance. In a
different sub-population the allele frequencies may change to 0.60 and 0.40
for the A1 and A, alleles, respectively. Because the sampling process is a
random process, there is no way to predict if any allele frequency will go up,
or down. What can be predicted is how large is the variance of change in
allele frequencies among all sub-populations. The reason is that the process
of picking up two alleles at random is a binomial process, very similar to
picking up two colored balls from a bag containing red and blue balls (or
tossing a coin, if you like).

Using the properties of the binomial distribution we can say that the
sampling consists of picking up an allele at a time. Probability of picking up
A1 is, on average, po and probability of picking up A: is, on average, qo and
we are going to do the sampling 2N times. Therefore, the variance of change
in an allele frequency (say Aq) is:

oy, =0 [24]

Presence of N in the denominator of Equation 24 shows that the variance of
change in allele frequency very much depends on the size of sub-
populations. The smaller the population, the larger the variance becomes.
This means that if the sub-populations are small, the amount of change in an
allele frequency in any single sub-population can be quite large. When the
sampling process continues for many generations, the allele frequencies in
any sub-population fluctuate up and down. Depending on the size of sub-
populations, sooner or later, frequency of one the alleles gets closer and
closer to 1.0, and eventually that allele gets fixed in that sub-population. The
emerging pattern from the sampling process is that the sub-populations
diverge from each other (see Figure 11).

26



1.0 Fixed: 1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Frequency of the A; allele (p)

Generation

Figure 11 — Divergence of sub-population under sampling process is a small
population.

MATING PROCESS & INBREEDING

At the individual level, there is the mating process. Each individual has the
opportunity of mating with any other individual (this is called panmixia),
and because there is no selection, all matings lead to production of equally
fertile and healthy offspring. However, because population size is constant,
not all individuals can mate or produce offspring and consequently some of
the individuals cannot contribute to the production of offspring. Eventually,
and inevitably, the small population size leads to the non-randomness of
matings.

It is extremely difficult to define random mating. In the most abstract way,
random mating can be defined as a correlation of zero between mates
(correlation with respect to phenotype, genotype or relationship). One thing
that is even more difficult to do is classification of different sorts of non-
random mating.

For our purposes, let (for the moment) define inbreeding as a form of non-
random mating and a consequence of small sub-population size. In other
words, in a small sub-population, matings depart from random mating, in
the sense that the mating individuals tend to become more related to each
other. The matings happens progressively among relatives.

DEFINITION
Inbreeding is defined as the process of two identical copies of a single
ancestral allele being passed down to a descendent.

1t is the “identity by descent” that is of central importance in the inbreeding
process.

Now that we have defined inbreeding, we need a way of measuring the
inbreeding (let’s call it the inbreeding coefficient, F). Conceptually, the
inbreeding coefficient can be measure in the following manner. At the time
of reproduction in an idealized population (sub-population) a limited number
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of gametes are going to be sampled (to be exact 2N gametes). Each of the N
individuals in this generation has two unique alleles, each of which has been
copied a large number of times (each gamete contains one copy of one of
these two alleles). Therefore, in the sub-population we have the following
alleles: A and A; in the first individual, Az and A4 in the second individual,
Aoni and Aoy in the N individual. The question of interest is: What is the
probability of sampling a second gamete containing an allele (say A1) when
the first sampled gamete already contains the same allele (that is A1)? The
answer is:

1
2N 23]
The reason is that, there is virtually an infinite number of gametes. The fact
that we have already sampled one gamete containing A does not change the
frequency of A gametes. The frequency of A gamete was 1/2N and it
remains at 1/2N . After one round of reproduction (that is, in the next
generation, let’s call it Generation 1), there are still 2N alleles left in the sub-
population. However, these 2N alleles are not unique anymore. Some of
them are unique, and some are not. The proportion of non-unique alleles is
1/2N and the proportion of unique alleles is, obviously, 1-(1/2N). At the
time of reproduction for the individuals of Generation 1, to produce the
individuals of Generation 2, the sampling of gametes needs to be repeated.
Again, the question to be asked is: What is the probability of sampling a
second gamete containing an allele when the first sampled gamete already
contains the same allele? The answer is that we have to calculate two
probabilities. The first probability is for the new copies that may be produced
in this round of reproduction, the new inbreeding, which is 1/2N . The
second probability is for the old copies that are being passed down from the

previous generation. Therefore, in Generation 2 the inbreeding coefficient
(F2) 1s:

1 1
F=—~+|1-— |F 26
=5 (1755 F 26
or more generally:
1 1
b=t =5 | F, [27]
2N 2N

It can be concluded that the change in inbreeding coefficient (AF, also called
rate of inbreeding) in an idealized population is:

AF:L [28]
2N

Please notice that the above description was a ‘“conceptual” way of
measuring the inbreeding coefficient. In the above description, we assumed
that two gametes from an individual can unite with each other, as if the
organism was self-fertilizing hermaphrodite. That is not a realistic situation.
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However, the general results (Equations 26 and 27) are still valid for the
absolute majority of species, including all farm animals. The only difference
is that for sampling of two gametes containing two identical copies of one
ancestral allele we have to wait for two generation. In a realistic situation,
all alleles in Generation 0 are assumed to be unique, and multiple copies of
them are created in Generation 1. It is in Generation 2 that the possibility of
two uniting gametes, having identical copies of an ancestral allele, exists for
the first time.

Measuring inbreeding coefficient (F)

In a way, the inbreeding coefficient of an individual can be measured only,
and only, when unequivocal knowledge of identity by descent for all loci is
available, and this is almost always impossible.

However, there are many different methods to calculate the average
inbreeding coefficients for all loci of an individual or the average inbreeding
coefficient for all individuals of a population with respect to a locus. These
methods can be, roughly, divided in two groups: Exact methods (which are
based on the information about the pedigree), and approximate methods
(which are based on the information about the population structure).

Measuring F based on pedigree information by path method

For calculating the inbreeding coefficient of an individual based on the
pedigree information we need to go back in the pedigree of that individual,
through one of its parents, until we reach a common ancestor, and then to
the other parent. Using the following equation the inbreeding coefficient is
calculated:

F=-3(3) [29]

where n is the number of individual starting from one parent, through the
common ancestor, to the other parent, and X is for summation over all
common ancestors. Consider the following simple pedigree:

\/ N/
\/

Figure 12 — A simple pedigree for an 1nd1v1dual with one common ancestor

In the pedigree in Figure 12 the animal of interest is X, whose parents B and
C have only one common ancestor, A. There are three individuals to count
B, C and A. Therefore, Fx = (1/2)* = 1/8 = 0.125.

In the pedigree in Figure 13, the parents of the animal of interest, E, have
two common ancestors, A and B, both of which should be taken into account.
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There are two loops and three individuals in each loop. One loop consists of
C, A and D, while the other loop consists of C, B and D. Therefore, Fg =
(1/2)* + (1/2)* = 1/4 = 0.25.

A B

C ><D
\

Figure 13 — A simple pedigree for an individual with two common ancestor

Equation 29 can be used for those individuals whose common ancestor is
not inbred. If the common ancestor is itself an inbred individual, the
inbreeding coefficient of the ancestor should be taken into account also.
Consider the following pedigree:

Figure 14 — A pedigree for an individual whose common ancestor is an
inbred individual

Equation to be used for such pedigrees is:

F,= ZG)n(l +F.) [30]

For individual X the inbreeding coefficient should be calculated as follows:
Fx = (1/2)* [1 + (1/2)°] = (1/2)* + (1/2)*"5 = (1/8) + (1/256) = (33/256)

30



Relationship

Calculation of inbreeding coefficient in an individual reveals also the
“coefficient of relationship” between the parents of the individual. The
coefficient of relationship, also called “additive genetic relationship”,
“theoretical correlation” or simply “relationship”, measures the average
proportion of [common] alleles that are identical by descent in those two
individuals. The relationship between any two individuals, designated as “a”
is twice the inbreeding coefficient of their offspring. For individuals H and
I in Figure 14, the relationship is calculated as:

a,=2F, [31a]

Equation 30 can also be used to calculate the relationship between two
individuals. However, instead of starting from the offspring, we start from
one of the individuals, go through the common ancestor and to the other
individual and count the number of paths.

Equation 31a can be re-arranged to so that the inbreeding coefficient of any
individual can be calculated from the additive genetic relationship of its
parents, i.e.

F,=Y%a,, [31b]

Measuring F based on pedigree information by tabular method
Measuring F using the path method is very easy as long as the pedigree is
simple. However, if the pedigree becomes deep (more than 2-3 generations),
or if the pedigree becomes large (more than 20-30 individuals), or if the
pedigree becomes complicated (more than 2-3 common ancestors), then
measuring F by the path method will no longer be easy. The problem with
the path method, one could say, is that it is not easy to program it, to
computerize it.

An alternative method of measuring F is by using the so-called tabular
method. Description of tabular method is, a bit, cumbersome. So, please give
it a chance. As an example, consider the simple pedigree depicted in Figure
13. Let’s make a list of all individuals and their parents. Further, order the
individual from old to young (as much as possible, so that no offspring
appear in the list before their parents).

Table 9 — Tabular representation of the pedigree in Figure 13.
Individual Sire Dam
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Before starting the calculations draw a table for all individuals. Let the first
column be filled with the names (or ID’s or numbers) of individuals.
Similarly, let the first row be filled with the names of individuals and their
parents.

Table 9.1 — The A-matrix of the pedigree in Figure 13.
j BN e A,B A,B C,D
A B C D E

mgoaQws>—

The table shown above is actually the famous A-matrix or the “additive
genetic relationship matrix” (sometimes also called “Wright’s numerator
relationship matrix™).

The diagonal values of the A-matrix, aii, are equal to the relationship of an
individual with itself, which is,
a,=1.0+%a_, [32]

where asq is the coefficient of relationship between sire and dam of the
individual.

The off-diagonal values of the A-matrix, ajj (where 1 # j), are equal to the
average relationship of individual i1 with the parents of individual j, which
1s,

a; =1/z(al.sj +al.d/_) [33]

where s;j and d; are sire and dam of individual j.
In practice the cells of the A-matrix can be filled as in the following steps:

Step 1

Start with the individuals of the “base” population, i.e. individuals whose
parents are unknown (in this example, individuals A and B). These
individuals are assumed to be non-inbred and unrelated to each other. Let
the diagonal and upper-diagonal values for these individuals to be 1.0 and
0.0, respectively. It can be seen that these values are results of Equations 32
and 33, respectively, for animals with unknown ancestry.
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Table 9.2 — The A-matrix of the pedigree in Figure 13.

j - -,- AB AB C,D

i A B C D E
A 1.0 0.0

B 1.0

C

D

E

Step 2

Starting from the first individual of the “base” population, use Equation 33
to calculate the relationship of the individual in row 1 with the individual in
column j. The relationship between individual A and individuals C, D and E
are shown below:

a,.=%(a,,+a,)="(.0+0.0)=0.5
a,,=%(a, +a,)="(.0+0.0)=0.5
a,.=%(a,+a,,)="(0.5+0.5)=0.5

You realize that when we go from left to right, all elements that we need for
any cell have been already calculated. In this example, aaa and aagp that are
needed for individuals C and D have already been calculated in Step 1. And
aac and aap that are needed for individual E have just been calculated when
we were dealing with individual C and D. Calculation of relationship
between individual B and individual C, D and E follow the same method as
for individual A. Therefore, the first two rows of the A-matrix can now be
filled.

Table 9.3a — The A-matrix of the pedigree in Figure 13.

] - -\ AB AB CD
i A B C D E
A 1.0 0.0 0.5 0.5 0.5
B 1.0 0.5 0.5 0.5
C
D
E

Step 3

Starting with the diagonal value for the first individual of “non-base”
population, use Equation 33 and work through the row from left to right
using Equation 33. Values for individual C are shown below:

acc=1.0+%a,=1.0+"(0.0)=1.0
acp="2(ap,+a-)="2(0.5+0.5)=0.5
acp="2(acc+aq,)="2(1.0+0.5)=0.75

Table 9.3b — The A-matrix of the pedigree in Figure 13.
] -\ -\ AB A.B C,D

b b
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i A B C D E
A 1.0 0.0 0.5 0.5 0.5
B 1.0 0.5 0.5 0.5
C 1.0 0.5 0.75
D
E

Values for individual D are shown below:

ap,=1.0+%a,,=1.0+'2(0.0)=1.0
app="2(apc+ap,)="2(0.5+1.0)=0.75
Table 9.3¢ — The A-matrix of the pedigree in Figure 13.
j -,- -,- AB A.B C.D

i A B C D E
A 1.0 0.0 0.5 0.5 0.5
B 1.0 0.5 0.5 0.5
C 1.0 0.5 0.75
D 1.0 0.75
E

Now it’s time to calculate the diagonal value for the last individual, E, as

follows:

a,,=1.0+%a., =1.0+%(0.5)=1.25

Table 9.3d — The A-matrix of the pedigree in Figure 13.

] AB AB C.D
i A B C D E
A 1.0 0.0 0.5 0.5 0.5
B 1.0 0.5 0.5 0.5
C 1.0 0.5 0.75
D 1.0 0.75
E 1.25

Because the A-matrix is symmetric, we can just copy the upper-diagonal

values to the lower-diagonal values and the A-matrix is complete.

Table 9.3e — The A-matrix of the pedigree in Figure 13.

] A,B A,B C,D
i A B C D E
A 1.0 0.0 0.5 0.5 0.5
B 0.0 1.0 0.5 0.5 0.5
C 0.5 0.5 1.0 0.5 0.75
D 0.5 0.5 0.5 1.0 0.75
E 0.5 0.5 0.75 0.75 1.25
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Combining Equations 31b and 32, you can see that the diagonal value for
any individual is:

a,=1.0+%a_=1.0+F, [34]

Therefore, the inbreeding coefficient for individual E, Fg = 0.25.

As mentioned earlier, the tabular method seems, a bit, cumbersome.
However, because all calculations are performed in small steps and any
values needed for younger individual have been calculated earlier, it is very
easy to write a computer program can calculate additive genetic
relationships and inbreeding coefficients for the most complicated
pedigrees, even if the pedigree is very large.

Measuring F based on effective population size

In situations where the information on the pedigree is not available, or the
pedigree is too extensive (i.e. pedigree contains a very large number of
individuals) we may calculate an approximation of the inbreeding
coefficient. This is done through calculation of a parameter called “effective
population size”. The concept of effective population size is a confusing
concept for many people. In order to facilitate its understanding, we can use
some analogy from ordinary (!) life. Consider two large international
corporations (Company A and B), each with 1000 shareholders. In Company
A, all shareholders own the same number of shares, and consequently can
influence the decisions equally. In company B, one of the shareholders owns
51% of the shares. Do you think that each of the shareholders in Company
B can influence the decisions equally? In Company A, there are 1000
decision makers. In Company B, there is effectively, only one decision
maker. In population genetics, the gamete pool (collection of all alleles) is
like a company. The question is: “Are all parents contributing equally to the
gamete pool?”

DEFINITION

For a real population not fulfilling the assumptions of the idealized
population, the effective population size, Ne, is defined as the size of an
idealized population that would lead to the same rate of inbreeding (AF) as
in the real population.

In other words, if the rate of inbreeding, or the sampling variance, or the
probability of identity by descent could be calculated for a real population,
then we could back calculate the size of an idealized population with equal
rate of inbreeding, or the sampling variance, or the probability of identity
by descent. The size of that idealized population is the “effective population
size” for the real population.

If the effective population size is known for a real population, then we can
use the following equation for calculation of rate of inbreeding (and many
other inbreeding related parameters):
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[35]

Effective population size depends on the population structure, .i.e. number
of individuals of each gender, mating ratios, family size and so on. The
problem is that there is no really general equation that can provide the
effective population size for all sorts of population structures. The closest
you can get to a general equation is the following [horrible looking]
equation:

d_ v 2+0., +Mamm » JF(M)2 a;f
N 16M F ’

. F
| 1 M 2F bel
2 _2 2
+—16F‘:2+(7) O_ﬁn+vo-ﬁn,ﬁ'+ Uﬁ:l

where M and F are the number of males and females, respectively, 6° and
are the variance and covariance of family size, respectively, and m and f
indicate the path from parent to offspring. For example, Gmm,ms stands for the
covariance between “number of sires to sons” and “number of sires to
daughters”. Equation 36 can be simplified for some situations
(unfortunately, not all situations).

When the number of males (Nm) and females (Ny) are different, Equation 36
can be approximated to:

AN, N,
N NL

& 37
N 4N, [37]

If there is a variation in family size, but the variation is equal for males and
females, Equation 36 is approximated to:

N~ 4N
V,+2

[38]

And if the variation in family size is different for the two sexes, then we can
use the following equation:

=~ __ 8 [39]
Vew + Vi +4

However, when the numbers of individuals in successive generations are

different, Equation 36 cannot be used. A close look at Equation 31 shows

that for calculation of effective population size we need to calculate the

harmonic mean, and this is exactly what we need to do to calculate the

effective population size when the numbers of individuals in generations 1
tot (N1, No, ..., Ny) are different:

36



LI U0 R R & [40]
NN TN, TN

e t
Using Equations 37 to 40, together with the general Equation 36, one can
calculate the rate of inbreeding in a population and consequently an average
inbreeding coefficient for all individuals.

Interpretation of the inbreeding coefficient

As mentioned before, the inbreeding coefficients calculated from the
pedigree or the population structure, are average values and can be
interpreted in two ways (or at two levels). At the level of loci, the inbreeding
coefficient can be interpreted as the average proportion of all loci in an
individual that contain two alleles that are identical by descent. At the
population level, the inbreeding coefficient can be interpreted as the average
proportion of all individuals that carry two identical copies of an ancestral
allele in a certain locus.
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